期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
电池大数据智能分析平台的研发与应用 被引量:5
1
作者 焦君宇 张全權 +7 位作者 陈宁波 王冀钰 芦秋迪 丁浩浩 彭鹏 宋孝河 张帆 郑家新 《储能科学与技术》 CAS CSCD 北大核心 2024年第9期3198-3213,共16页
随着电动汽车和储能需求的持续增加,高性能电池的产量迅速上升,人们对电池先进制造的要求也越来越高。智能制造在电池行业中扮演着至关重要的角色,通过集成自动化技术、信息技术、计算仿真和人工智能,智能制造可以极大地提高生产效率和... 随着电动汽车和储能需求的持续增加,高性能电池的产量迅速上升,人们对电池先进制造的要求也越来越高。智能制造在电池行业中扮演着至关重要的角色,通过集成自动化技术、信息技术、计算仿真和人工智能,智能制造可以极大地提高生产效率和灵活性,减少人为错误,挖掘材料的内部机理,提高产品性能。基于人工智能的电池大数据分析技术是智能制造的重要一环,旨在通过高级数据分析技术,辅助研发人员开展各种电池的性能评估、预测与优化。为此,我们基于机器学习技术开发出一系列高效算法,实现电池大数据分析中的特征分析、电池一致性分析、电池健康状态估计以及电池剩余寿命预测等电池中常见的分析任务。此外,我们还提供了一个标准化的分析框架来全面分析电池数据、预测电池的性能,帮助研发人员直观理解复杂的数据集,并揭示数据中的模式和关系。同时,我们还将这些算法集成到电池大数据分析平台——智芯工坊中,以解决现有的电池大数据分析平台数据集成度低、分析工具单一和可扩展性不足等问题。这些智能算法的普及与应用有助于人们实现电池的高效分析与智能管理,进而推动电池行业的数智化发展。 展开更多
关键词 锂电池 大数据 人工智能 软件平台 特征 电池剩余寿命 电池健康状态
在线阅读 下载PDF
The mechanism of external pressure suppressing dendrites growth in Li metal batteries 被引量:2
2
作者 Genming Lai Yunxing Zuo +8 位作者 Junyu Jiao Chi Fang Qinghua Liu Fan Zhang Yao Jiang Liyuan Sheng Bo Xu Chuying Ouyang Jiaxin Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期489-494,共6页
Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern ca... Li metal is considered an ideal anode material for application in the next-generation secondary batteries.However,the commercial application of Li metal batteries has not yet been achieved due to the safety concern caused by Li dendrites growth.Despite the fact that many recent experimental studies found that external pressure suppresses the Li dendrites growth,the mechanism of the external pressure effect on Li dendrites remains poorly understood on the atomic scale.Herein,the large-scale molecular dynamics simulations of Li dendrites growth under different external pressure were performed with a machine learning potential,which has the quantum-mechanical accuracy.The simulation results reveal that the external pressure promotes the process of Li self-healing.With the increase of external pressure,the hole defects and Li dendrites would gradually fuse and disappear.This work provides a new perspective for understanding the mechanism for the impact of external pressure on Li dendrites. 展开更多
关键词 Li metal Machine learning potential Molecular dynamic simulation DENDRITE External pressure
在线阅读 下载PDF
Hylanemos:An integrated solution for materials simulations based on Kohn-Sham DFT
3
作者 Jianshu JIE Ming XU +15 位作者 Chun WANG Shiqiang FAN Fan ZHANG Haifeng ZHENG Yaokun YE Ruiqi ZHANG Jiahua LIU Kangming HU Shucheng LI Qinghua LIU Yipu ZHANG Linping SUN Xiaohe SONG Sibai LI Yunxing ZUO Jiaxin ZHENG 《Science China(Technological Sciences)》 2025年第9期73-89,共17页
The Kohn-Sham density functional theory(KS-DFT)has played an important role in materials simulation for a long time.To better serve the industry,it is desirable to have an integrated solution that supports different c... The Kohn-Sham density functional theory(KS-DFT)has played an important role in materials simulation for a long time.To better serve the industry,it is desirable to have an integrated solution that supports different calculation tasks by KSDFT with different corrections and modifications.In this work,we present Hylanemos,a plane wave pseudopotential(PW-PP)KS-DFT package written entirely in the Julia programming language,which could offer such a solution.First,we analyze the code design to get the flexibility needed to implement such a solution.Then,we show that its accuracy and speed are comparable to widely-used packages.Next,we show its ability to perform common tasks such as single point(SP)calculations,geometry optimization,and transition state calculations.Finally,the LDA+Gutzwiller(LDA+G)method is presented,a feature not commonly found in DFT packages.In addition,we have also developed a set of ultrasoft(US)PP through parameter adjustment and optimization.This set of PP,called Eacomp PP,has a low cutoff energy(<18 Ha)and exhibits excellent performance in our benchmarks.Combining a performant package and optimized potentials will facilitate our in-depth efforts in promoting industrialization. 展开更多
关键词 ab initio software Kohn-Sham density functional theory high-performance computing generalized self-consistent method
原文传递
AI-driven next-generation lithium-ion battery design automation(BDA)software
4
作者 Zekai Liu Genming Lai +9 位作者 Yunxing Zuo Xiaohe Song Qinghua Liu Fan Zhang Ziyi Wang Qi Ji Jiaxin Zheng Jiadong Gong Bo Xu Chuying Ouyang 《National Science Open》 2025年第6期58-80,共23页
This review presents battery design automation(BDA)as a transformative artificial intelligence(AI)-driven paradigm for the next-generation lithium-ion battery research and development.Addressing the intricacy of the p... This review presents battery design automation(BDA)as a transformative artificial intelligence(AI)-driven paradigm for the next-generation lithium-ion battery research and development.Addressing the intricacy of the problems and challenges in developing lithium-ion batteries with better performance,which are cross-scale,long-process,and multi-factor,BDA integrates multi-scale simulations and artificial intelligence into a unified platform.It ranges from atomic-scale material screening to system-level performance prediction.By bridging the gap between scientific innovation and industrial applications,BDA facilitates the development of lithium-ion battery,enhancing its efficiency,safety,and energy density.The paper outlines BDA's architecture,core technologies,current progress,and future challenges,highlighting its potential to revolutionize the battery design process and strengthen the pivotal role of lithium-ion battery in energy storage technology. 展开更多
关键词 battery design automation artificial intelligence multi-scale simulation lithium-ion batteries materials design machine learning force fields
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部