Changes of dyeing behavior of wool after stretching - setting treatment are studied.Effects of stretching - setting on wool structure are analyzed.It is concluded that stretching - setting treatment not only reduces w...Changes of dyeing behavior of wool after stretching - setting treatment are studied.Effects of stretching - setting on wool structure are analyzed.It is concluded that stretching - setting treatment not only reduces wool diameter and increases wool length,but also brings about low-temperature dyeing of wool.展开更多
The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Des...The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.展开更多
Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut...Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut shell, and the structure of the isolated luteolin was characterized with FTIR techniques. The interaction between dyestuff and fiber was preliminarily discussed through thermodynamic study and supramolecular structure simulation to explain the intrinsic reasons why the color fastness was low when luteolin was applied to dyeing wool fabric. The extraction condition and purification parameter were as follows: 65% ethanol, ratio of material to liquid 1:20, 80°C, 3 h, chloroform-methanol-water (4/3/2, V/V), 800 rmp/min, 2.0 Mkpa, 0.5 mL/ min and 280 nm. The results of dyeing thermodynamics showed that the sorption isotherm of luteolin on wool fabric was consistent with Nernst model and similar to the disperse dyestuff. With molecular simulation, luteolin and glycin composed 8 stable complexes whose Laplacian values all were greater than 0, which suggested typical hydrogen bonds existing. The complex with three hydrogen bonds was proved the most stable. Both studies on thermodynamics and supramolecular simulation revealed that luteolin on wool fabric mainly depended on the weak hydrogen bonds interaction that determined the low dyefastness.展开更多
The dyeing temperature of natural dye lac red on two kinds of natural protein fibers was studied, and the interaction between dyestuff and fiber was discussed through thermodynamic study and density functional theory ...The dyeing temperature of natural dye lac red on two kinds of natural protein fibers was studied, and the interaction between dyestuff and fiber was discussed through thermodynamic study and density functional theory (DFT) calculation. The optimum temperature for lac red dyed silk was 60˚C and wool showed a better response at 90˚C. The thermodynamics study revealed good Nernst isotherm and Freundlich adsorption models respectively, and the lac dye adsorption processes were both spontaneous and exothermic. The potential interaction of Laccaic acid A with the external environment by electrostatic potential and atomic charge distribution was first explored. With molecular simulation, Laccaic acid A and glycine composed 8 stable complexes. Then, typical hydrogen bonds, bond length, and binding energy, etc. were analyzed. The results revealed lac red on silk and wool fabric mainly depended on the weak hydrogen bonds and van der Waals force which determined the low dye fastness.展开更多
In this study, the dyeing properties of different fabric species were investigated using root extract of yellow sormunen (Alkanna orientalis). For this purpose, the cotton and wool fabrics were dyed using the root e...In this study, the dyeing properties of different fabric species were investigated using root extract of yellow sormunen (Alkanna orientalis). For this purpose, the cotton and wool fabrics were dyed using the root extract of yellow sormunen by pre-mordanting, together-mordanting and last-mordanting methods with copper sulfate (CuSO4), iron sulfate (FeSO4) and aluminum sulfate (AiK(SO4)2) at medium pH. The same procedure was applied to cotton and wool fabrics that allowed in Artifical Urinary System (AUS) [%3 NH3 + %3 urea + %3 CAC2O4(g/v)] for 24 h. The color codes were determined with Pantone Color Quide, and K/S and L* a* b* values were detected with color measurement spectrophotometer, and also washing-, crocking-fastness levels were evaluated using gray scale. According to the evaluations, the fabrics dyed pre-treated with AUS have higher fastness values than the unpre-treated dyed fabrics with AUS.展开更多
With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance elec...With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.展开更多
All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have e...All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have exactly the same chemical properties,they can overcome the problem of poor fiber-matrix adhesion in biocomposites.In this study,ACC was prepared by partially dissolving wood pulp in a cryogenic aqueous phosphoric acid solution,and the effects of dissolution temperature,dissolution time and pressing load on the properties of ACC were investigated.The results showed that a dissolution time of 45 min achieved the optimal reinforcement-matrix ratio.The use of an aqueous ethanol solution at an ethanol mass fraction of 50%as a coagulation bath and a pressing load of 3000 kg during the drying process achieved the best mechanical properties of ACC,with a tensile strength of 49.3 MPa(approximately 210%higher than that of the untreated wood pulp)and an elastic modulus of 1.6 GPa(approximately 122%higher than that of the untreated wood pulp).The composite’s compactness affected ACC’s mechanical properties.The air permeability analysis showed that the barrier performance of ACC was also significantly better than that of the untreated wood pulp.With a pressing load of 3500 kg,the surface water contact angle(WCA)increased to 110.3°(approximately 94%higher than that of the untreated wood pulp),and the air permeability was significantly reduced to 1.1 mm/s,showing its good application prospects in the field of green packaging materials.展开更多
Therapy-induced modulation of the tumor microenvironment(TME)to overcome the immunosuppressive TME is considered to be a chance for cancer treatment.Herein,we prepared near-infrared absorbing aza-BODIPY PhEt-azaBDP wi...Therapy-induced modulation of the tumor microenvironment(TME)to overcome the immunosuppressive TME is considered to be a chance for cancer treatment.Herein,we prepared near-infrared absorbing aza-BODIPY PhEt-azaBDP with 1-phenylethyl group at 1,7-sites,a type I photodynamic-photothermal therapy(PDT-PTT)agent.Self-assembly PhEt-azaBDP nanoparticles(NPs)can provide combined phototherapeutic effects under light irradiation and simultaneously induce inflammatory TME,by monitoring tumorassociated macrophages(TAMs)repolarization.Utilizing cluster of differentiation 86(CD86)and CD163 as the M1-type marker and M2-type marker respectively,PhEt-azaBDP NPs resulted in the increasement of the expression of CD86 and the decreasement of the expression of CD163 in TAMs under near-infrared(NIR)light irradiation,promoting TAMs to switch from M2-phenotype to M1-phenotype.Inflammatory cytokines,interleukin-1β(IL-1β)and tumor necrosis factor-α(TNF-α),could be the key cytokine involved in the phototherapy-induced TME reprogramming.PhEt-azaBDP NPs could be a potential theranostic scaffold for the simultaneous induction and detection of TME reprogramming triggered by phototherapy.展开更多
Simultaneous degradation and detoxification during pharmaceutical and personal care product removal are important for water treatment.In this study,sodium niobate nanocubes decorated with graphitic carbon nitride(NbNC...Simultaneous degradation and detoxification during pharmaceutical and personal care product removal are important for water treatment.In this study,sodium niobate nanocubes decorated with graphitic carbon nitride(NbNC/g-C_(3)N_(4))were fabricated to achieve the efficient photocatalytic degradation and detoxification of ciprofloxacin(CIP)under simulated solar light.NaNbO_(3)nanocubes were in-situ transformed from Na_(2)Nb_(2)O_(6)·H_(2)O via thermal dehydration at the interface of g-C_(3)N_(4).The optimized NbNC/g-C_(3)N_(4)-1 was a type-I heterojunction,which showed a high conduction band(CB)level of−1.68 eV,leading to the efficient transfer of photogenerated electrons to O_(2) to produce primary reactive species,•O_(2)^(-).Density functional theory(DFT)calculations of the density of states indicated that C 2p and Nb 3d contributed to the CB,and 0.37 e^(-)transferred from NaNbO_(3)to g-C_(3)N_(4)in NbNC/g-C_(3)N_(4)based on the Mulliken population analysis of the built-in electric field intensity.NbNC/g-C_(3)N_(4)-1 had 3.3-and 2.3-fold of CIP degradation rate constants(k_(1)=0.173 min^(−1))compared with those of pristine g-C_(3)N_(4)and NaNbO_(3),respectively.In addition,N24,N19,and C5 in CIP with a high Fukui index were reactive sites for electrophilic attack by•O_(2)^(-),resulting in the defluorination and ring-opening of the piperazine moiety of the dominant degradation pathways.Intermediate/product identification,integrated with computational toxicity evaluation,further indicated a substantial detoxification effect during CIP degradation in the photocatalysis system.展开更多
D-D’-A type aza-borondipyrromethenes(aza-BODIPYs)were prepared by Suzuki cross-coupling reaction.Photothermal conversion efficiency of self-assemble aza-BODIPY-based nanoparticles(DA-azaBDP-NPs)with NIR-Ⅱ emission(...D-D’-A type aza-borondipyrromethenes(aza-BODIPYs)were prepared by Suzuki cross-coupling reaction.Photothermal conversion efficiency of self-assemble aza-BODIPY-based nanoparticles(DA-azaBDP-NPs)with NIR-Ⅱ emission(λ_(em)=1065 nm)was 37.2%under near infrared(NIR)irradiation,and the outstanding cytotoxicity was triggered by coexistence of DA-azaBDP-NPs and the NIR irradiation,with the decrease of glioblastoma migration and the inhibition of glioblastoma proliferation.DA-azaBDP-NPs could promote glioblastoma autophagy and accelerate the process of cell death.The photothermal therapy(PTT)of DAazaBDP-NPs can effectively induce glioblastoma death by apoptosis under the NIR irradiation,which is highly promising to be applied in vivo experiments of brain.展开更多
The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of a...The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of absorption ability.Herein,a series of ultralight composites with rational heterointerfaces(Co/ZnO@N-doped C/layer-stacked C,MSC)is fabricated by calcination with ration-al construction of sugarcane and CoZn-zeolitic imidazolate framework(ZIF).The components and structures of as-prepared composites were investigated,and their electromagnetic parameters could be adjusted by the content of CoZn-ZIFs.All composites possess excellent EW absorption performance,especially MSC-3.The optimal minimum reflection loss and effective absorption band of MSC-3 can reach−42 dB and 7.28 GHz at the thickness of only 1.6 mm with 20wt%filler loading.This excellent performance is attributed to the syner-gistic effect of dielectric loss stemming from the multiple heterointerfaces and magnetic loss induced by magnetic single Co.The sugar-cane-derived layer-stacked carbon has formed consecutive conductive networks and has further dissipated the electromagnetic energy through multiple reflection and conduction losses.Moreover,the simulated radar cross section(RCS)technology manifests that MSC-3 possesses outstanding EW attenuation capacity under realistic far-field conditions.This study provides a strategy for building efficient ab-sorbents based on biomass.展开更多
Tertiary phosphines and their oxides react with oxalyl bromide to generate corresponding quaternary phosphonium salts,which can be further transformed as active intermediates to facilitate the bromination of alcohols ...Tertiary phosphines and their oxides react with oxalyl bromide to generate corresponding quaternary phosphonium salts,which can be further transformed as active intermediates to facilitate the bromination of alcohols and the dibromination of unsaturated hydrocarbons.This chemical process carries substantial research significance in the field of organic synthesis.In this study,two types of triaryl phosphine oxides and benzyl diaryl phosphine oxides containing alkyne groups were designed and synthesized.These compounds were then subjected to reaction with oxalyl bromide,resulting in the formation of novel benzophosphonium tribromides and trans-phosphoryl dibromoalkenes,respectively.These findings demonstrate variations from their reactions with oxalyl chloride.Furthermore,the benzophosphonium tribromide obtained can act as an alternative reagent for bromine,enabling the direct bromination of aromatics compounds,olefin,alkyne and acetophenone derivatives.展开更多
Antifouling textiles have been a hot research field in the last ten years.But lately,the European Union(EU)is expected to ban the production of C6 fluorinated water repellent,oil repellent and antifouling agents from ...Antifouling textiles have been a hot research field in the last ten years.But lately,the European Union(EU)is expected to ban the production of C6 fluorinated water repellent,oil repellent and antifouling agents from 2025,achieving complete fluoride-free antifouling measures.In the context of the current policy regulations on fluorine-free treatment in the waterproof,oil repellent and antifouling finishing field,this paper conducts a literature survey and comprehensive understanding of the current research status and trend in fluorine-free antifouling finishing.CiteSpace and Carrot2 are used to conduct a literature review of the latest papers in two databases,Web of Science(WoS)and China National Knowledge Infrastructure(CNKI).Firstly,the theoretical evolution and technical characteristics of textiles antifouling finishing technology are systematically discussed,and the technological differences of antifouling finishing textiles for different demands are compared.Secondly,the three main stages of the development of textile antifouling finishing technology and its corresponding finishing methods are summarized.Finally,three paths for the future development of fluorine-free antifouling finishing are prospected:construction of low surface energy,construction of uniform rough surface and low surface energy,and construction of multistage rough surface with low surface energy.To facilitate the transition of the industrial sector to fluorine-free,regulatory restrictions could be strengthened by enhancing the sampling inspection of apparel fabrics,detecting fluorine in wastewater discharges and restricting the production of fluorine-containing finishing agents by manufacturers.展开更多
Integrating ring-fused modification withπ-conjugated extension is an effective approach for designing,synthesizing,and application for novel borondipyrromethene(BODIPY)structures.In this work,based on phenyl[b]-fused...Integrating ring-fused modification withπ-conjugated extension is an effective approach for designing,synthesizing,and application for novel borondipyrromethene(BODIPY)structures.In this work,based on phenyl[b]-fused BODIPY,we made reasonable modification of the methyl group at 1-site to generate dye NBDP.NBDP possessed near-infrared region(NIR)absorption and emission properties,and the intramolecular charge transfer(ICT)resulted in low fluorescence.Whereas,heat energy is evidently released in the presence of light,which can be exploited for intracellular photothermal therapy via the cell apoptosis process,reducing the inflammatory side-effects induced by necrosis.This research provides a crucial foundation for the novel molecule via BODIPY multi-directional alteration and its potential application in anti-tumor phototherapy.展开更多
Near infrared-II(NIR-II)dyes have unique advantages in biomedical applications owing to the powerful ability in penetrating biological tissues.Herein,NIR-II aza-BODIPY dye,QLD-BDP,was developed with julolidine at 1,7-...Near infrared-II(NIR-II)dyes have unique advantages in biomedical applications owing to the powerful ability in penetrating biological tissues.Herein,NIR-II aza-BODIPY dye,QLD-BDP,was developed with julolidine at 1,7-sites and p-dimethylaminophenyl group at 3,5-sites.According to X-ray analysis,QLD-BDP exhibits significant distortion,and this molecule appears a bowl shaped structure.The photothermal conversion efficiency of the self-assembled QLD-BDP nanoparticles(QLD-BDP-NPs)can reach 50.5%,with maximum emission at 998 nm by the aggregate.QLD-BDP-NPs can cause the complete destruction of 4T1multicellular spheroids(MCSs),indicating a photothermal therapy(PTT)effect.展开更多
Spin-orbit,charge-transfer intersystem crossing(SOCT-ISC)can directly overcome the disadvantages of the traditional heavy-atom effect and improve the generation efficiency of reactive oxygen species(ROS).Since orthogo...Spin-orbit,charge-transfer intersystem crossing(SOCT-ISC)can directly overcome the disadvantages of the traditional heavy-atom effect and improve the generation efficiency of reactive oxygen species(ROS).Since orthogonal molecular orbitals of donor-acceptor(D-A)pairs favor the SOCT-ISC transition,herein aza-borondipyrromethenes(aza-BODIPYs)with 1,7-di-anthracyl groups(An-azaBDP)was successfully prepared,owing to steric hindrance to produce a big dihedral angle between the two molecular orbital(MO)planes.Moreover,according to density functional theory(DFT)and time-dependent density functional theory(TDDFT),the energy difference between the S1-T1orbitals of An-aza BDP is small and more inclined towards ISC.An-aza BDP can effectively generate singlet oxygen under light irradiation.An-aza BDP with light irradiation can induce apoptosis in SW620 cells,and can serve as a potential candidate for the treatment of cancer cells and tumors.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a...4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a crucial derivative of BODIPY scaffold that has the favorable optical properties and a significant spectral redshift. The photophysical properties can be tuned by molecular design, and the attenuation path of the excited state energy release of absorbed light energy can be well controlled via structural modifications, enabling tailored application. It has been extensively employed in life medicine fields including fluorescence imaging diagnosis, photodynamic therapy photosensitizer and photothermal therapy reagent and so forth. Extensive research and review have been performed in these areas. However, BODIPYs/aza-BODIPYs have a significant role in energy, catalysis, optoelectronics, photo-responsive materials and other fields. Nevertheless, there are relatively few studies and reviews in these fields on the modification and application based on BODIPY/aza-BODIPY scaffold. Herein, in this review we summarized the application of BODIPY/aza-BODIPY in the aforementioned fields, with the molecular regulation of dye as the foundation and the utilization in the above fields as the objective, in the intention of providing inspiration for the exploration of innovative BODIPY/aza-BODIPY research in the field of light resource conversion and functional materials.展开更多
Sand mold 3D printing technology has been recognized as a digital,high-quality,and promising sand mold forming method.However,sand mold 3D printing technology has drawbacks,such as single molding material and long cur...Sand mold 3D printing technology has been recognized as a digital,high-quality,and promising sand mold forming method.However,sand mold 3D printing technology has drawbacks,such as single molding material and long curing time,which limit its further industrial application.Therefore,this study proposes a method for forming composite sand molds based on a layer-stacking structure and a strengthening method based on interlayer heating.The influence of the process parameters on the properties of traditional and composite sand molds was systematically studied.Experimental results demonstrated that when the heating temperature was 150℃,the enhancement of the sand mold was obvious,with an increase of approximately 20%compared to untreated sand mold.When the composite sand mold with a laminated thickness of 1.5 mm was heated at this temperature,its tensile strength reached 1.53 MPa,and compressive strength reached 5.80 MPa,which met the casting requirements.The composite sand mold printed by interlayer heating has excellent casting performance and economic advantages,which provide theoretical guidance for the high-performance printing of sand molds.展开更多
文摘Changes of dyeing behavior of wool after stretching - setting treatment are studied.Effects of stretching - setting on wool structure are analyzed.It is concluded that stretching - setting treatment not only reduces wool diameter and increases wool length,but also brings about low-temperature dyeing of wool.
基金supported by Natural Science Foundation of Shanghai (20ZR1400300)Textile Vision Applied Basic Research Project (J202005)National Key Research & Development Program of China (2017YFB0309600)。
文摘The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.
文摘Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut shell, and the structure of the isolated luteolin was characterized with FTIR techniques. The interaction between dyestuff and fiber was preliminarily discussed through thermodynamic study and supramolecular structure simulation to explain the intrinsic reasons why the color fastness was low when luteolin was applied to dyeing wool fabric. The extraction condition and purification parameter were as follows: 65% ethanol, ratio of material to liquid 1:20, 80°C, 3 h, chloroform-methanol-water (4/3/2, V/V), 800 rmp/min, 2.0 Mkpa, 0.5 mL/ min and 280 nm. The results of dyeing thermodynamics showed that the sorption isotherm of luteolin on wool fabric was consistent with Nernst model and similar to the disperse dyestuff. With molecular simulation, luteolin and glycin composed 8 stable complexes whose Laplacian values all were greater than 0, which suggested typical hydrogen bonds existing. The complex with three hydrogen bonds was proved the most stable. Both studies on thermodynamics and supramolecular simulation revealed that luteolin on wool fabric mainly depended on the weak hydrogen bonds interaction that determined the low dyefastness.
文摘The dyeing temperature of natural dye lac red on two kinds of natural protein fibers was studied, and the interaction between dyestuff and fiber was discussed through thermodynamic study and density functional theory (DFT) calculation. The optimum temperature for lac red dyed silk was 60˚C and wool showed a better response at 90˚C. The thermodynamics study revealed good Nernst isotherm and Freundlich adsorption models respectively, and the lac dye adsorption processes were both spontaneous and exothermic. The potential interaction of Laccaic acid A with the external environment by electrostatic potential and atomic charge distribution was first explored. With molecular simulation, Laccaic acid A and glycine composed 8 stable complexes. Then, typical hydrogen bonds, bond length, and binding energy, etc. were analyzed. The results revealed lac red on silk and wool fabric mainly depended on the weak hydrogen bonds and van der Waals force which determined the low dye fastness.
文摘In this study, the dyeing properties of different fabric species were investigated using root extract of yellow sormunen (Alkanna orientalis). For this purpose, the cotton and wool fabrics were dyed using the root extract of yellow sormunen by pre-mordanting, together-mordanting and last-mordanting methods with copper sulfate (CuSO4), iron sulfate (FeSO4) and aluminum sulfate (AiK(SO4)2) at medium pH. The same procedure was applied to cotton and wool fabrics that allowed in Artifical Urinary System (AUS) [%3 NH3 + %3 urea + %3 CAC2O4(g/v)] for 24 h. The color codes were determined with Pantone Color Quide, and K/S and L* a* b* values were detected with color measurement spectrophotometer, and also washing-, crocking-fastness levels were evaluated using gray scale. According to the evaluations, the fabrics dyed pre-treated with AUS have higher fastness values than the unpre-treated dyed fabrics with AUS.
基金supported by the National Natural Science Foundation of China(No.52377026)Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Natural Science Foundation of Shandong Province,China(No.ZR2024ME046).
文摘With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.
基金Fundamental Research Funds for the Central Universities,China(No.2232023G-04)。
文摘All-cellulose composites(ACCs)are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase.ACC consists entirely of cellulose,and since the reinforcement phase and the matrix have exactly the same chemical properties,they can overcome the problem of poor fiber-matrix adhesion in biocomposites.In this study,ACC was prepared by partially dissolving wood pulp in a cryogenic aqueous phosphoric acid solution,and the effects of dissolution temperature,dissolution time and pressing load on the properties of ACC were investigated.The results showed that a dissolution time of 45 min achieved the optimal reinforcement-matrix ratio.The use of an aqueous ethanol solution at an ethanol mass fraction of 50%as a coagulation bath and a pressing load of 3000 kg during the drying process achieved the best mechanical properties of ACC,with a tensile strength of 49.3 MPa(approximately 210%higher than that of the untreated wood pulp)and an elastic modulus of 1.6 GPa(approximately 122%higher than that of the untreated wood pulp).The composite’s compactness affected ACC’s mechanical properties.The air permeability analysis showed that the barrier performance of ACC was also significantly better than that of the untreated wood pulp.With a pressing load of 3500 kg,the surface water contact angle(WCA)increased to 110.3°(approximately 94%higher than that of the untreated wood pulp),and the air permeability was significantly reduced to 1.1 mm/s,showing its good application prospects in the field of green packaging materials.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21-104-0-23,LJKZ0453)China Medical University’s High-Quality Development Science and Technology Funding Program(Nos.2022JH2/20200063,2023JH2/20200162).
文摘Therapy-induced modulation of the tumor microenvironment(TME)to overcome the immunosuppressive TME is considered to be a chance for cancer treatment.Herein,we prepared near-infrared absorbing aza-BODIPY PhEt-azaBDP with 1-phenylethyl group at 1,7-sites,a type I photodynamic-photothermal therapy(PDT-PTT)agent.Self-assembly PhEt-azaBDP nanoparticles(NPs)can provide combined phototherapeutic effects under light irradiation and simultaneously induce inflammatory TME,by monitoring tumorassociated macrophages(TAMs)repolarization.Utilizing cluster of differentiation 86(CD86)and CD163 as the M1-type marker and M2-type marker respectively,PhEt-azaBDP NPs resulted in the increasement of the expression of CD86 and the decreasement of the expression of CD163 in TAMs under near-infrared(NIR)light irradiation,promoting TAMs to switch from M2-phenotype to M1-phenotype.Inflammatory cytokines,interleukin-1β(IL-1β)and tumor necrosis factor-α(TNF-α),could be the key cytokine involved in the phototherapy-induced TME reprogramming.PhEt-azaBDP NPs could be a potential theranostic scaffold for the simultaneous induction and detection of TME reprogramming triggered by phototherapy.
基金the National Key Research and Development Program of China(Nos.2021YFA1202500 and 2022YFF1303004)Shenzhen Science and Technology Program(No.JCYJ20220531093205013)+6 种基金the National Natural Science Foundation of China(NSFC)(Nos.52100069,52270053 and 52200084)the Beijing Natural Science Foundation(No.8232035),the Beijing Nova Program(No.20220484215)the Beijing National Laboratory for Molecular Sciences(No.BNLMS2023011)Emerging Engineering Interdisciplinary-Young Scholars Project(Peking University),the Fundamental Research Funds for the Central Universities are greatly acknowledgedsupported by the High-Performance Computing Platform of Peking Universitythe National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab)are also acknowledgedsupported by the program of“Research on Advanced Treatment Technology of New Pollutants in Domestic Sewage of Residential District”.
文摘Simultaneous degradation and detoxification during pharmaceutical and personal care product removal are important for water treatment.In this study,sodium niobate nanocubes decorated with graphitic carbon nitride(NbNC/g-C_(3)N_(4))were fabricated to achieve the efficient photocatalytic degradation and detoxification of ciprofloxacin(CIP)under simulated solar light.NaNbO_(3)nanocubes were in-situ transformed from Na_(2)Nb_(2)O_(6)·H_(2)O via thermal dehydration at the interface of g-C_(3)N_(4).The optimized NbNC/g-C_(3)N_(4)-1 was a type-I heterojunction,which showed a high conduction band(CB)level of−1.68 eV,leading to the efficient transfer of photogenerated electrons to O_(2) to produce primary reactive species,•O_(2)^(-).Density functional theory(DFT)calculations of the density of states indicated that C 2p and Nb 3d contributed to the CB,and 0.37 e^(-)transferred from NaNbO_(3)to g-C_(3)N_(4)in NbNC/g-C_(3)N_(4)based on the Mulliken population analysis of the built-in electric field intensity.NbNC/g-C_(3)N_(4)-1 had 3.3-and 2.3-fold of CIP degradation rate constants(k_(1)=0.173 min^(−1))compared with those of pristine g-C_(3)N_(4)and NaNbO_(3),respectively.In addition,N24,N19,and C5 in CIP with a high Fukui index were reactive sites for electrophilic attack by•O_(2)^(-),resulting in the defluorination and ring-opening of the piperazine moiety of the dominant degradation pathways.Intermediate/product identification,integrated with computational toxicity evaluation,further indicated a substantial detoxification effect during CIP degradation in the photocatalysis system.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21-104-0-23).
文摘D-D’-A type aza-borondipyrromethenes(aza-BODIPYs)were prepared by Suzuki cross-coupling reaction.Photothermal conversion efficiency of self-assemble aza-BODIPY-based nanoparticles(DA-azaBDP-NPs)with NIR-Ⅱ emission(λ_(em)=1065 nm)was 37.2%under near infrared(NIR)irradiation,and the outstanding cytotoxicity was triggered by coexistence of DA-azaBDP-NPs and the NIR irradiation,with the decrease of glioblastoma migration and the inhibition of glioblastoma proliferation.DA-azaBDP-NPs could promote glioblastoma autophagy and accelerate the process of cell death.The photothermal therapy(PTT)of DAazaBDP-NPs can effectively induce glioblastoma death by apoptosis under the NIR irradiation,which is highly promising to be applied in vivo experiments of brain.
基金supported by the National-Natural Science Foundation of China(Nos.52302362,52377026,and 52301192)Doctorial Foundation of Henan University of Technology,China(Nos.2021BS030 and 2020BS030)+3 种基金Key Scientific and Technological Research Projects in Henan Province,China(Nos.222102240091 and 232102240038)Natural Science Foundation from the Department of Science and Technology of Henan Province,China(No.232300420309)Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)“Sanqin Scholars”Innovation Teams Project of Shaanxi Province,China(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘The pervasive adoption of 5th generation mobile communication technology propels electromagnetic wave(EW)absorbents to achieve high-level performance.The heterointerface construction is crucial to the improvement of absorption ability.Herein,a series of ultralight composites with rational heterointerfaces(Co/ZnO@N-doped C/layer-stacked C,MSC)is fabricated by calcination with ration-al construction of sugarcane and CoZn-zeolitic imidazolate framework(ZIF).The components and structures of as-prepared composites were investigated,and their electromagnetic parameters could be adjusted by the content of CoZn-ZIFs.All composites possess excellent EW absorption performance,especially MSC-3.The optimal minimum reflection loss and effective absorption band of MSC-3 can reach−42 dB and 7.28 GHz at the thickness of only 1.6 mm with 20wt%filler loading.This excellent performance is attributed to the syner-gistic effect of dielectric loss stemming from the multiple heterointerfaces and magnetic loss induced by magnetic single Co.The sugar-cane-derived layer-stacked carbon has formed consecutive conductive networks and has further dissipated the electromagnetic energy through multiple reflection and conduction losses.Moreover,the simulated radar cross section(RCS)technology manifests that MSC-3 possesses outstanding EW attenuation capacity under realistic far-field conditions.This study provides a strategy for building efficient ab-sorbents based on biomass.
文摘Tertiary phosphines and their oxides react with oxalyl bromide to generate corresponding quaternary phosphonium salts,which can be further transformed as active intermediates to facilitate the bromination of alcohols and the dibromination of unsaturated hydrocarbons.This chemical process carries substantial research significance in the field of organic synthesis.In this study,two types of triaryl phosphine oxides and benzyl diaryl phosphine oxides containing alkyne groups were designed and synthesized.These compounds were then subjected to reaction with oxalyl bromide,resulting in the formation of novel benzophosphonium tribromides and trans-phosphoryl dibromoalkenes,respectively.These findings demonstrate variations from their reactions with oxalyl chloride.Furthermore,the benzophosphonium tribromide obtained can act as an alternative reagent for bromine,enabling the direct bromination of aromatics compounds,olefin,alkyne and acetophenone derivatives.
基金Fundamental Research Funds for the Central Universities,China(No.2232021G-03)National Natural Science Foundation of China(Nos.72074132 and 71704165)。
文摘Antifouling textiles have been a hot research field in the last ten years.But lately,the European Union(EU)is expected to ban the production of C6 fluorinated water repellent,oil repellent and antifouling agents from 2025,achieving complete fluoride-free antifouling measures.In the context of the current policy regulations on fluorine-free treatment in the waterproof,oil repellent and antifouling finishing field,this paper conducts a literature survey and comprehensive understanding of the current research status and trend in fluorine-free antifouling finishing.CiteSpace and Carrot2 are used to conduct a literature review of the latest papers in two databases,Web of Science(WoS)and China National Knowledge Infrastructure(CNKI).Firstly,the theoretical evolution and technical characteristics of textiles antifouling finishing technology are systematically discussed,and the technological differences of antifouling finishing textiles for different demands are compared.Secondly,the three main stages of the development of textile antifouling finishing technology and its corresponding finishing methods are summarized.Finally,three paths for the future development of fluorine-free antifouling finishing are prospected:construction of low surface energy,construction of uniform rough surface and low surface energy,and construction of multistage rough surface with low surface energy.To facilitate the transition of the industrial sector to fluorine-free,regulatory restrictions could be strengthened by enhancing the sampling inspection of apparel fabrics,detecting fluorine in wastewater discharges and restricting the production of fluorine-containing finishing agents by manufacturers.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Natural Science Foundation of Liaoning(No.2021NLTS1206)“Chunhui Program”cooperative research project of Education Ministry,Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21–104–0–23)。
文摘Integrating ring-fused modification withπ-conjugated extension is an effective approach for designing,synthesizing,and application for novel borondipyrromethene(BODIPY)structures.In this work,based on phenyl[b]-fused BODIPY,we made reasonable modification of the methyl group at 1-site to generate dye NBDP.NBDP possessed near-infrared region(NIR)absorption and emission properties,and the intramolecular charge transfer(ICT)resulted in low fluorescence.Whereas,heat energy is evidently released in the presence of light,which can be exploited for intracellular photothermal therapy via the cell apoptosis process,reducing the inflammatory side-effects induced by necrosis.This research provides a crucial foundation for the novel molecule via BODIPY multi-directional alteration and its potential application in anti-tumor phototherapy.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21–104–0–23)。
文摘Near infrared-II(NIR-II)dyes have unique advantages in biomedical applications owing to the powerful ability in penetrating biological tissues.Herein,NIR-II aza-BODIPY dye,QLD-BDP,was developed with julolidine at 1,7-sites and p-dimethylaminophenyl group at 3,5-sites.According to X-ray analysis,QLD-BDP exhibits significant distortion,and this molecule appears a bowl shaped structure.The photothermal conversion efficiency of the self-assembled QLD-BDP nanoparticles(QLD-BDP-NPs)can reach 50.5%,with maximum emission at 998 nm by the aggregate.QLD-BDP-NPs can cause the complete destruction of 4T1multicellular spheroids(MCSs),indicating a photothermal therapy(PTT)effect.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21–104–0–23)。
文摘Spin-orbit,charge-transfer intersystem crossing(SOCT-ISC)can directly overcome the disadvantages of the traditional heavy-atom effect and improve the generation efficiency of reactive oxygen species(ROS).Since orthogonal molecular orbitals of donor-acceptor(D-A)pairs favor the SOCT-ISC transition,herein aza-borondipyrromethenes(aza-BODIPYs)with 1,7-di-anthracyl groups(An-azaBDP)was successfully prepared,owing to steric hindrance to produce a big dihedral angle between the two molecular orbital(MO)planes.Moreover,according to density functional theory(DFT)and time-dependent density functional theory(TDDFT),the energy difference between the S1-T1orbitals of An-aza BDP is small and more inclined towards ISC.An-aza BDP can effectively generate singlet oxygen under light irradiation.An-aza BDP with light irradiation can induce apoptosis in SW620 cells,and can serve as a potential candidate for the treatment of cancer cells and tumors.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21-104-0-23)。
文摘4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a crucial derivative of BODIPY scaffold that has the favorable optical properties and a significant spectral redshift. The photophysical properties can be tuned by molecular design, and the attenuation path of the excited state energy release of absorbed light energy can be well controlled via structural modifications, enabling tailored application. It has been extensively employed in life medicine fields including fluorescence imaging diagnosis, photodynamic therapy photosensitizer and photothermal therapy reagent and so forth. Extensive research and review have been performed in these areas. However, BODIPYs/aza-BODIPYs have a significant role in energy, catalysis, optoelectronics, photo-responsive materials and other fields. Nevertheless, there are relatively few studies and reviews in these fields on the modification and application based on BODIPY/aza-BODIPY scaffold. Herein, in this review we summarized the application of BODIPY/aza-BODIPY in the aforementioned fields, with the molecular regulation of dye as the foundation and the utilization in the above fields as the objective, in the intention of providing inspiration for the exploration of innovative BODIPY/aza-BODIPY research in the field of light resource conversion and functional materials.
基金supported by National Key R&D Program of China(Grant No.2021YFB3401200)Jiangsu Basic Research Program(Natural Science Fund)Youth Fund(Grant No.BK20230885)Special Technical Project for Equipment Pre-research(Grant No.30104040302).
文摘Sand mold 3D printing technology has been recognized as a digital,high-quality,and promising sand mold forming method.However,sand mold 3D printing technology has drawbacks,such as single molding material and long curing time,which limit its further industrial application.Therefore,this study proposes a method for forming composite sand molds based on a layer-stacking structure and a strengthening method based on interlayer heating.The influence of the process parameters on the properties of traditional and composite sand molds was systematically studied.Experimental results demonstrated that when the heating temperature was 150℃,the enhancement of the sand mold was obvious,with an increase of approximately 20%compared to untreated sand mold.When the composite sand mold with a laminated thickness of 1.5 mm was heated at this temperature,its tensile strength reached 1.53 MPa,and compressive strength reached 5.80 MPa,which met the casting requirements.The composite sand mold printed by interlayer heating has excellent casting performance and economic advantages,which provide theoretical guidance for the high-performance printing of sand molds.