Artificial Intelligence(AI)is fundamentally transforming medical diagnostics,driving advancements that enhance accuracy,efficiency,and personalized patient care.This narrative review explores AI integration across var...Artificial Intelligence(AI)is fundamentally transforming medical diagnostics,driving advancements that enhance accuracy,efficiency,and personalized patient care.This narrative review explores AI integration across various diagnostic domains,emphasizing its role in improving clinical decision-making.The evolution of medical diagnostics from traditional observational methods to sophisticated imaging,laboratory tests,and molecular diagnostics lays the foundation for understanding AI’s impact.Modern diagnostics are inherently complex,influenced by multifactorial disease presentations,patient variability,cognitive biases,and systemic factors like data overload and interdisciplinary collaboration.AI-enhanced clinical decision support systems utilize both knowledge-based and non-knowledge-based approaches,employing machine learning and deep learning algorithms to analyze vast datasets,identify patterns,and generate accurate differential diagnoses.AI’s potential in diagnostics is demonstrated through applications in genomics,predictive analytics,and early disease detection,with successful case studies in oncology,radiology,pathology,ophthalmology,dermatology,gastroenterology,and psychiatry.These applications demonstrate AI’s ability to process complex medical data,facilitate early intervention,and extend specialized care to underserved populations.However,integrating AI into diagnostics faces significant limitations,including technical challenges related to data quality and system integration,regulatory hurdles,ethical concerns about transparency and bias,and risks of misinformation and overreliance.Addressing these challenges requires robust regulatory frameworks,ethical guidelines,and continuous advancements in AI technology.The future of AI in diagnostics promises further innovations in multimodal AI,genomic data integration,and expanding access to high-quality diagnostic services globally.Responsible and ethical implementation of AI will be crucial to fully realize its potential,ensuring AI serves as a powerful ally in achieving diagnostic excellence and improving global health care outcomes.This narrative review emphasizes AI’s pivotal role in shaping the future of medical diagnostics,advocating for sustained investment and collaborative efforts to harness its benefits effectively.展开更多
The development of eight new diagnostic systems and the improvement of the laser Thomson scattering system contributed to the experimental campaign on HL-2A in 2006. Besides, the accuracy and flexibility of the molecu...The development of eight new diagnostic systems and the improvement of the laser Thomson scattering system contributed to the experimental campaign on HL-2A in 2006. Besides, the accuracy and flexibility of the molecular beam injection (MBI) system was improved greatly by using the special driver and controller, it is more convenient for studies such as particle transport. In the field of plasma physics experiment, the features of 3-D GAM zonal flows were further studied and some signs of low frequency zonal flows were observed. In the ECRH experiments, the effects of ECRH on sawtooth activities and m/n= 1/1 mode were studied under different plasma discharge conditions. The effect of MBI during ECRH on plasma behavior, such as non-local heat transport, was also studied.展开更多
A present status of the diagnostics in EAST is presented. As a very important step of the EAST project, tens of diagnostics were employed for operation and protection of the machine, plasma control and physics analysi...A present status of the diagnostics in EAST is presented. As a very important step of the EAST project, tens of diagnostics were employed for operation and protection of the machine, plasma control and physics analysis to accommodate requirement for the study on plasma performance in EAST with upgraded radio frequency (RF) injection power up to 4 MW (both LHCD and ICRF) in the forthcoming years. Recently, new diagnostics are set up to provide several profiles of key plasma parameters for the further evaluation and better understanding of the plasma performance and physics in EAST, including a 25-channel Thomson scattering system for density and electron temperature, a metal bolometry for radiated power, an X-ray crystal spectroscopy for both ion and electron temperatures and plasma rotation velocity, etc. It is expected that these diagnostics would play an important role in data analysis and interpretation combined with integrated modeling.展开更多
Cardiomyopathies are acute or chronic disorders of myocardium. Diagnostic characterization of disease entities demands endomyocardial biopsy analyses with histological, immunohistochemical and molecular biological tis...Cardiomyopathies are acute or chronic disorders of myocardium. Diagnostic characterization of disease entities demands endomyocardial biopsy analyses with histological, immunohistochemical and molecular biological tissue evaluations to establish a final diagnosis. Only such biopsy-based information allows so far a specific treatment of distinct cardiomyopathy subgroups. In order to reduce sampling error, tissue specimens have to be obtained and analyzed to get clinically relevant data for specific treatment options. Specific gene expression and microRNA (miRNAs) profiles as well as genetic markers add additional valuable information which not only reduce the sampling error but also improve patient management. Advantages of such biomarkers result from their general expression within the entire altered myocardium. Thus, obtained information does not depend on small tissue areas reached by biopsy. This very fact allows prediction of a myocardial infection even in virus-negative areas adjoining positive biopsy specimen. The combination of multiple deregulated miRNAs or genes into one disease specific diagnostic profile demands the integration of new profiling technologies in the routine workflows of cardiological laboratories. In future, multiplex approaches allowing rapid and absolutely reliable identification of inflammatory or virally-induced myocardial diseases will replace singleplex methods such as direct detection of viral genomes in one single biopsy. miRNAs are stable biomarkers which are not only detectable in tissue samples but also in body fluids. Consequently, the determination of distinct miRNA patterns in e.g. peripheral blood samples will provide a systemic diagnostic approach for the characterization of distinct cardiomyopathies by means of non-invasive methods. This will reduce the number of undiagnosed patients who have to undergo endomyocardial biopsy for final confirmation of their myocardial complaints. The resulting molecular diagnostics will pave the way from biopsy focused interpretation to systemic analysis of cardiomyopathies. To reach this goal, the set-up of modern diagnostics harks back to the broad portfolio of high-end analytical techniques and tools.展开更多
IntroductionThe introduction of modern imaging and fast imaging processing has tremendously improved detection and staging of pancreatic cancer. Besides progress in surgical techniques and handling the advances of bot...IntroductionThe introduction of modern imaging and fast imaging processing has tremendously improved detection and staging of pancreatic cancer. Besides progress in surgical techniques and handling the advances of both computerized tomography (CT) and magnetic resonance imaging (MRI) have remarkably contributed to higher展开更多
Alzheimer’s disease (AD) is a leading cause of death, yet there is no disease-modifying drug therapy currently available. It is critical to establish a diagnosis of AD before clinical system onset so that drug therap...Alzheimer’s disease (AD) is a leading cause of death, yet there is no disease-modifying drug therapy currently available. It is critical to establish a diagnosis of AD before clinical system onset so that drug therapies can start earlier. Unfortunately, this is not the current standard practice. Artificial intelligence (AI) holds tremendous promise for identifying AD related structural changes in brain scan images. This paper discusses the recent applications and potential future directions for AI in AD diagnostics. Annual brain scanning and computer vision-assisted early diagnosis is encouraged, so that disease-modifying drug therapy could begin earlier in the progressive pathology.展开更多
Myocarditis and dilated cardiomyopathy (DCM) are acute or chronic disorders of myocardium. The gold standard for final confirmation of causative reasons of these heart muscle diseases is the endomyocardial biopsy (EMB...Myocarditis and dilated cardiomyopathy (DCM) are acute or chronic disorders of myocardium. The gold standard for final confirmation of causative reasons of these heart muscle diseases is the endomyocardial biopsy (EMB) analysis. Due to focal pathology, diagnostics are failing if the EMB does not contain the area of interest. Personalized medicine comprises the genetic information together with the phenotypic and environmental factors to yield a tailored healthcare for each individual and removes the limitations of the “one-size-fits-all” therapy approach. This provides the opportunity to translate therapies from bench to bedside, to diagnose and predict disease, and to improve patient-tailored treatments based on the unique signatures of a patient’s disease. Furthermore, novel treatment schedules can be identified which have eventually the chance to enhance long-term survivals. Global biomarkers such as specific gene expression signatures or miRNA profiles not only have the potential to reduce this problem but also add valuable information for individualized therapy decisions. In future, multiplex approaches allowing rapid and absolutely reliable identification of inflammatory or virally-induced myocardial diseases will replace singleplex methods such as direct detection of viral genomes in one single biopsy. Gene or miRNA profiles are upcoming diagnostic biomarkers for cardiomyopathies which are not only detectable in tissue samples but in body fluids as well. Consequently, a systemic diagnostic approach by determination of distinct expression pattern in e.g., peripheral blood samples will support the characterization of distinct cardiomyopathies by means of non-invasive methods.展开更多
A discharge-produced-plasma(DPP) source emitting in the extreme ultraviolet(EUV) spectral region is running at the ENEA Frascati Research Centre. The plasma is generated in low-pressure xenon gas and efficiently emits...A discharge-produced-plasma(DPP) source emitting in the extreme ultraviolet(EUV) spectral region is running at the ENEA Frascati Research Centre. The plasma is generated in low-pressure xenon gas and efficiently emits 100-ns duration radiation pulses in the 10–20-nm wavelength range, with an energy of 20 m J/shot/sr at a 10-Hz repetition rate. The complex discharge evolution is constantly examined and controlled with electrical measurements, while a nsgated CCD camera allowed observation of the discharge development in the visible, detection of time-resolved plasmacolumn pinching, and optimization of the pre-ionization timing. Accurately calibrated Zr-filtered PIN diodes are used to monitor the temporal behaviour and energy emission of the EUV pulses, while the calibration of a dosimetric film allows quantitative imaging of the emitted radiation. This comprehensive plasma diagnostics has demonstrated its effectiveness in suitably adjusting the source configuration for several applications, such as exposures of photonic materials and innovative photoresists.展开更多
All cells release extracellular vesicles(EVs)as part of their normal physiology.As one of the subtypes,exosomes(EXOs)have an average size range of approximately 40 nm e160 nm in diameter.Benefiting from their inherent...All cells release extracellular vesicles(EVs)as part of their normal physiology.As one of the subtypes,exosomes(EXOs)have an average size range of approximately 40 nm e160 nm in diameter.Benefiting from their inherent immunogenicity and biocompatibility,the utility of autologous EXOs has the potential for both disease diagnosis/treatment.EXOs are generally employed as“bioscaffolds”and the whole diagnostic and therapeutic effects are mainly ascribed to exogenous cargos on the EXOs,such as proteins,nucleic acids,and chemotherapeutic agents and fluorophores delivered into specific cells or tissues.Surface en-gineering of EXOs for cargo loadings is one of the prerequisites for EXO-mediated diagnosis/treatment.After revisiting EXO-mediated diagnosis/treatment,the most popular strategies to directly undertake loadings of exogenous cargos on EXOs include genetic and chemical en-gineering.Generally,genetically-engineered EXOs can be merely produced by living organisms and intrinsically face some drawbacks.However,chemical methodologies for engineered EXOs diversify cargos and extend the functions of EXOs in the diagnosis/treatment.In this review,we would like to elucidate different chemical advances on the molecular level of EXOs along with the critical design required for diagnosis/treatment.Besides,the prospects of chemical engineering on the EXOs were critically addressed.Nevertheless,the superiority of EXO-medi-ated diagnosis/treatment via chemical engineering remains a challenge in clinical translation and trials.Furthermore,more chemical crosslinking on the EXOs is expected to be explored.Despite substantial claims in the literature,there is currently no review to exclusively summa-rize the chemical engineering to EXOs for diagnosis/treatment.We envision chemical engi-neering of EXOs will encourage more scientists to explore more novel technologies for a wider range of biomedical applications and accelerate the successful translation of EXO-based drug“bioscaffolds”from bench to bedside.展开更多
Colorectal cancer(CRC)is one of the most molecularly heterogeneous malignancies,with complexity that extends far beyond traditional histopathological classifications.The consensus molecular subtypes(CMS)established in...Colorectal cancer(CRC)is one of the most molecularly heterogeneous malignancies,with complexity that extends far beyond traditional histopathological classifications.The consensus molecular subtypes(CMS)established in 2015 brought a marked advancement in the taxonomy of CRC,consolidating six classification systems into four novel subtypes,which focus on vital gene expression patterns and clinical and prognostic outcomes.However,nearly a decade of clinical experience with CMS classification has revealed fundamental limitations that underscore the inadequacy of any single classification system for capturing the full spectrum of CRC biology.The inherent challenges of the current paradigm are multifaceted.In the CMS classification,mixed phenotypes that remain unclassifiable constitute 13%of CRC cases.This reflects the remarkable heterogeneity that CRC shows.The tumor budding regions reflect the molecular shift due to CMS 2 to CMS 4 switching,causing further heterogeneity.Moreover,the reliance on bulk RNA sequencing fails to capture the spatial organization of molecular signatures within tumors and the critical contributions of the tumor microenvironment.Recent technological advances in spatial transcriptomics,singlecell RNA sequencing,and multi-omic integration have revealed the limitations of transcriptome-only classifications.The emergence of CRC intrinsic subtypes that attempt to remove microenvironmental contributions,pathway-derived subtypes,and stem cell-based classifications demonstrates the field’s recognition that multiple complementary classification systems are necessary.These newer molecular subtypes are not discrete categories but biological continua,thus highlighting that the vast molecular landscape is a tapestry of interlinked features,not rigid subtypes.Multiple technical hurdles cause difficulty in implementing the clinical translation of these newer molecular subtypes,including gene signature complexity,platform-dependent variations,and the difficulty of getting and preserving fresh frozen tissue.CMS 4 shows a poor prognostic outcome among the CMS subtypes,while CMS 1 is associated with poor survival in metastatic cases.However,the predictive value for definitive therapy remains subdued.Looking forward,the integration of artificial intelligence,liquid biopsy approaches,and real-time molecular monitoring promises to enable dynamic,multi-dimensional tumor characterization.The temporal and spatial complexity can only be captured by complementary molecular taxonomies rather than a single,unified system of CRC classification.Such an approach recognizes that different clinical questions–prognosis,treatment selection,resistance prediction–may require different molecular lenses,each optimized for specific clinical applications.This editorial advocates for a revolutionary change from pursuing a single“best”classification system toward a diverse approach that welcomes the molecular mosaic of CRC.Only through such comprehensive molecular characterization can we hope to achieve the promise of precision oncology for the diverse spectrum of patients with CRC.展开更多
Aging is a complex biological process characterized by nine hallmarks,including genomic instability,mitochondrial dysfunction,and chronic inflammation,which collectively drive the progression of age-related chronic no...Aging is a complex biological process characterized by nine hallmarks,including genomic instability,mitochondrial dysfunction,and chronic inflammation,which collectively drive the progression of age-related chronic non-communicable diseases.Phytonutrients,a class of bioactive secondary metabolites abundant in plants,have emerged as a promising research focus for intervening in the aging process due to their multifaceted biological activities.This review systematically elaborates on the molecular mechanisms,key signaling pathways,specifically SIRT1,Nrf2/ARE,and AMPK/mTOR,and the synergistic anti-aging effects of four typical phytonutrient categories:polyphenols(e.g.,resveratrol,quercetin),carotenoids(e.g.,lycopene,astaxanthin),sulfur compounds(e.g.,α-lipoic acid,ergothioneine),and phytoestrogens(e.g.,soybean isoflavones).The evidence indicates that these compounds combat aging through a multidimensional network involving direct antioxidant actions,free radical scavenging,metal chelation,promotion of autophagy,and modulation of inflammatory and epigenetic pathways.Crucially,the review highlights that synergistic interactions between different phytonutrients can significantly enhance their efficacy beyond the effect of any single compound.The aim is to consolidate the anti-aging evidence of phytonutrients and address the current translational challenges,such as bioavailability and a lack of robust human trials,thereby providing a comprehensive theoretical framework for developing effective,diet-centered strategies to promote healthy aging and reduce the global burden of non-communicable diseases.展开更多
Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxa...Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxanthin. This study investigated the impact of indicaxanthin on neuronal damage and gut microbiota dysbiosis induced by a high-fat diet in mice. The mice were divided into three groups according to different diets: the negative control group was fed a standard diet;the high-fat diet group was fed a high-fat diet;and the high-fat diet + indicaxanthin group was fed a high-fat diet and received indicaxanthin orally(0.86 mg/kg per day) for 4 weeks. Brain apoptosis, redox status, inflammation, and the gut microbiota composition were compared among the different animal groups. The results demonstrated that indicaxanthin treatment reduced neuronal apoptosis by downregulating the expression of proapoptotic genes and increasing the expression of antiapoptotic genes. Indicaxanthin also markedly decreased the expression of neuroinflammatory proteins and genes and inhibited high-fat diet–induced neuronal oxidative stress by reducing reactive oxygen and nitrogen species, malondialdehyde, and nitric oxide levels. In addition, indicaxanthin treatment improved the microflora composition by increasing the abundance of healthy bacterial genera, known as producers of short-chain fatty acids(Lachnospiraceae, Alloprovetella, and Lactobacillus), and by reducing bacteria related to unhealthy profiles(Blautia, Faecalibaculum, Romboutsia and Bilophila). In conclusion, indicaxanthin has a positive effect on high-fat diet–induced neuronal damage and on the gut microbiota composition in obese mice.展开更多
BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic mal...BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic malignancies.CASE SUMMARY We herein report a rare case of a 59-year-old female who presented with acute left upper quadrant abdominal pain without any history of trauma.Abdominal imaging demonstrated a heterogeneous splenic lesion with hemoperitoneum,raising clinical suspicion of SSR.Emergency laparotomy revealed a pancreatic tumor invading the spleen and left kidney,with associated splenic rupture and dense adhesions,necessitating en bloc resection of the distal pancreas,spleen,and left kidney.Histopathology revealed a biphasic malignancy composed of moderately differentiated pancreatic ductal adenocarcinoma and an undifferentiated carcinoma with rhabdoid morphology and loss of SMARCB1 expression.Immunohistochemical analysis confirmed complete loss of SMARCB1/INI1 in the undifferentiated component,along with a high Ki-67 index(approximately 80%)and CD10 positivity.The ductal adenocarcinoma component retained SMARCB1/INI1 expression and was positive for CK7 and CK-pan.Transitional zones between the two tumor components suggested progressive dedifferentiation and underlying genomic instability.The patient received adjuvant chemotherapy with gemcitabine and nab-paclitaxel and maintained a satisfactory quality of life at the 6-month follow-up.CONCLUSION This study reports a rare case of SMARCB1/INI1-deficient undifferentiated rhabdoid carcinoma of the pancreas combined with ductal adenocarcinoma,presenting as SSR-an exceptionally uncommon initial manifestation of pancreatic malignancy.展开更多
The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular rec...The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular recanalization treatments such as thrombolysis and mechanical thrombectomy have achieved some success,reperfusion injury remains a significant contributor to the exacerbation of brain injury.This emphasizes the need for developing neuroprotective strategies to mitigate this type of injury.The purpose of this review was to examine the application of nanotechnology in the treatment of ischemic stroke,covering research progress in nanoparticlebased drug delivery,targeted therapy,and antioxidant and anti-inflammatory applications.Nanobased drug delivery systems offer several advantages compared to traditional therapies,including enhanced blood–brain barrier penetration,prolonged drug circulation time,improved drug stability,and targeted delivery.For example,inorganic nanoparticles,such as those based on CeO_(2),have been widely studied for their strong antioxidant capabilities.Biomimetic nanoparticles,such as those coated with cell membranes,have garnered significant attention owing to their excellent biocompatibility and targeting abilities.Nanoparticles can be used to deliver a wide range of neuroprotective agents,such as antioxidants(e.g.,edaravone),anti-inflammatory drugs(e.g.,curcumin),and neurotrophic factors.Nanotechnology significantly enhances the efficacy of these drugs while minimizing adverse reactions.Although nanotechnology has demonstrated great potential in animal studies,its clinical application still faces several challenges,including the long-term safety of nanoparticles,the feasibility of large-scale production,quality control,and the ability to predict therapeutic effects in humans.In summary,nanotechnology holds significant promise for the treatment of ischemic stroke.Future research should focus on further exploring the mechanisms of action of nanoparticles,developing multifunctional nanoparticles,and validating their safety and efficacy through rigorous clinical trials.Moreover,interdisciplinary collaboration is essential for advancing the use of nanotechnology in stroke treatment.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparame...Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.展开更多
The flow-through hybridization and gene chip(FHGC)was developed to used in clinical molecular diagnostics for thalassemia,human papillomavirus(HPV),and other dis-eases.FHGC could improve hybridization efficiency and r...The flow-through hybridization and gene chip(FHGC)was developed to used in clinical molecular diagnostics for thalassemia,human papillomavirus(HPV),and other dis-eases.FHGC could improve hybridization efficiency and reduce hands-on time,thus improving precision,repro-ducibility,and traceability.Multiple genotypes can be detected simultaneously without incurring high costs.^(1)During the experiment,the polymerase chain reaction(PCR)product or buffer forced through the membrane matrix,PCR products are apprehended by a probe attached to the membrane.展开更多
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiolog...A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus,one of the most common neurological conditions worldwide.In this review,we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition.Then,we outline the definition,classification,and biological role of non-coding RNAs.Subsequently,we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail.Specifically,we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus,including glymphatic pathways,neuroinflammatory processes,and neurological dysplasia,on the basis of the existing evidence.Lastly,we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.展开更多
Accurate and sensitive near-infrared(NIR)luminescent lateralflow immunoassay(LFIA)has attracted considerable attention in thefield of point-of-care testing(POCT).However,the detection accuracy and sensitivity are ofte...Accurate and sensitive near-infrared(NIR)luminescent lateralflow immunoassay(LFIA)has attracted considerable attention in thefield of point-of-care testing(POCT).However,the detection accuracy and sensitivity are often compromised by the lowfluorescence quantum efficiency of the NIRfluorescent probe.(<10%)Herein,ultrabright NIR AIEgen nanoparticles(PS@AIE830NPs)composed of polystyrene(PS)nanoparticles and NIR aggregation-induced emission luminogen(AIEgen)with the maximum emission at 830 nm(AIE830)is reported,and its poten-tial to promote an accurate and sensitive detection of complex samples by LFIA is described.The relative quantum yield(QY)of the PS@AIE830NPs was 14.76%,which was superior to that of the polymer embedding method and indocyanine green(ICG)-based NIR nanoparticles.The PS@AIE830NPs immunolabeled-LFIA com-bined with laboratory-built NIR-LFIA portable quantitative instruments(detected light range 800 nm)completely eliminated background interference and allowed>highly accurate and sensitive detection without any pre-treatment steps.The limits of detection(LODs)for aflatoxin B1(AFB1)in soy sauce,alpha hemolysin(Hla)of Staphylococcus aureus biomarker in jointfluid,and C-reactive protein(CRP)in human haemolysed samples were 0.01 ng mL^(-1),0.02µg mL^(-1),and 0.156 mg L^(-1),respectively,commensurating with those of the corresponding gold standard assays and covering the detection range of interests.It is anticipated that the ultrabright NIR AIEgen nanoparticles will serve as a universally applicable signal probe for NIR-LFIA diagnostics,promising to expand the range of applications for quantitative detection of complex samples.展开更多
Continuous revision of the histologic and stage-wise classification of lung cancer by the World Health Organization (WHO) provides the foundation for therapeutic advances by promoting molecular targeted and immunother...Continuous revision of the histologic and stage-wise classification of lung cancer by the World Health Organization (WHO) provides the foundation for therapeutic advances by promoting molecular targeted and immunotherapies and ensuring accurate diagnosis. Cancer epidemiologic data provide helpful information for cancer prevention, diagnosis, and management, supporting health-care interventions. Global cancer mortality projections from 2016 to 2060 show that cancer will overtake ischemic heart diseases (IHD) as the leading cause of death (18.9 million) immediately after 2030, surpassing non-small cell lung cancer (NSCLC), which accounts for 85 percent of lung cancers. The clinical stage at the diagnosis is the main prognostic factor in NSCLC therapies. Advanced early diagnostic methods are essential as the initial stages of cancer show reduced mortality compared to the advanced stages. Sophisticated approaches to proper histological classification and NSCLC management have improved clinical efficiency. Although immune checkpoint inhibitors (ICIs) and targeted molecular therapies have refined the therapeutic management of late-stage NSCLC, the specificity and sensitivity of cancer biomarkers should be improved by focusing on prospective studies, followed by their use as therapeutic tools. The liquid biopsy candidates such as circulating tumor cells (CTCs), circulating cell-free tumor DNA (cfDNA), tumor educated platelets (TEP), and extracellular vesicles (EVs) possess cancer-derived biomolecules and aid in tracing: driver mutations leading to cancer, acquired resistance caused by various generations of therapeutic agents, refractory disease, prognosis, and surveillance.展开更多
文摘Artificial Intelligence(AI)is fundamentally transforming medical diagnostics,driving advancements that enhance accuracy,efficiency,and personalized patient care.This narrative review explores AI integration across various diagnostic domains,emphasizing its role in improving clinical decision-making.The evolution of medical diagnostics from traditional observational methods to sophisticated imaging,laboratory tests,and molecular diagnostics lays the foundation for understanding AI’s impact.Modern diagnostics are inherently complex,influenced by multifactorial disease presentations,patient variability,cognitive biases,and systemic factors like data overload and interdisciplinary collaboration.AI-enhanced clinical decision support systems utilize both knowledge-based and non-knowledge-based approaches,employing machine learning and deep learning algorithms to analyze vast datasets,identify patterns,and generate accurate differential diagnoses.AI’s potential in diagnostics is demonstrated through applications in genomics,predictive analytics,and early disease detection,with successful case studies in oncology,radiology,pathology,ophthalmology,dermatology,gastroenterology,and psychiatry.These applications demonstrate AI’s ability to process complex medical data,facilitate early intervention,and extend specialized care to underserved populations.However,integrating AI into diagnostics faces significant limitations,including technical challenges related to data quality and system integration,regulatory hurdles,ethical concerns about transparency and bias,and risks of misinformation and overreliance.Addressing these challenges requires robust regulatory frameworks,ethical guidelines,and continuous advancements in AI technology.The future of AI in diagnostics promises further innovations in multimodal AI,genomic data integration,and expanding access to high-quality diagnostic services globally.Responsible and ethical implementation of AI will be crucial to fully realize its potential,ensuring AI serves as a powerful ally in achieving diagnostic excellence and improving global health care outcomes.This narrative review emphasizes AI’s pivotal role in shaping the future of medical diagnostics,advocating for sustained investment and collaborative efforts to harness its benefits effectively.
文摘The development of eight new diagnostic systems and the improvement of the laser Thomson scattering system contributed to the experimental campaign on HL-2A in 2006. Besides, the accuracy and flexibility of the molecular beam injection (MBI) system was improved greatly by using the special driver and controller, it is more convenient for studies such as particle transport. In the field of plasma physics experiment, the features of 3-D GAM zonal flows were further studied and some signs of low frequency zonal flows were observed. In the ECRH experiments, the effects of ECRH on sawtooth activities and m/n= 1/1 mode were studied under different plasma discharge conditions. The effect of MBI during ECRH on plasma behavior, such as non-local heat transport, was also studied.
基金supported in part by National Natural Science Foundation of China (Nos. 10935004, 10775041)Sino-Japan Core University Program in Plasma Physics and Fusion Study
文摘A present status of the diagnostics in EAST is presented. As a very important step of the EAST project, tens of diagnostics were employed for operation and protection of the machine, plasma control and physics analysis to accommodate requirement for the study on plasma performance in EAST with upgraded radio frequency (RF) injection power up to 4 MW (both LHCD and ICRF) in the forthcoming years. Recently, new diagnostics are set up to provide several profiles of key plasma parameters for the further evaluation and better understanding of the plasma performance and physics in EAST, including a 25-channel Thomson scattering system for density and electron temperature, a metal bolometry for radiated power, an X-ray crystal spectroscopy for both ion and electron temperatures and plasma rotation velocity, etc. It is expected that these diagnostics would play an important role in data analysis and interpretation combined with integrated modeling.
基金Development of some diagnostic procedures and treat-ment strategies were supported by grants of the German Research Foundation(DFG),Transregional Collabora-tive Research Centre“Inflammatory Cardiomyopathy-Molecular Pathogenesis and Therapy”(SFB TR19,Z1)and two grants of the Federal Ministry of Education and Research(BMBF,Germany)for KMU innovative pro-gram(No.616 0315296,0316141A).
文摘Cardiomyopathies are acute or chronic disorders of myocardium. Diagnostic characterization of disease entities demands endomyocardial biopsy analyses with histological, immunohistochemical and molecular biological tissue evaluations to establish a final diagnosis. Only such biopsy-based information allows so far a specific treatment of distinct cardiomyopathy subgroups. In order to reduce sampling error, tissue specimens have to be obtained and analyzed to get clinically relevant data for specific treatment options. Specific gene expression and microRNA (miRNAs) profiles as well as genetic markers add additional valuable information which not only reduce the sampling error but also improve patient management. Advantages of such biomarkers result from their general expression within the entire altered myocardium. Thus, obtained information does not depend on small tissue areas reached by biopsy. This very fact allows prediction of a myocardial infection even in virus-negative areas adjoining positive biopsy specimen. The combination of multiple deregulated miRNAs or genes into one disease specific diagnostic profile demands the integration of new profiling technologies in the routine workflows of cardiological laboratories. In future, multiplex approaches allowing rapid and absolutely reliable identification of inflammatory or virally-induced myocardial diseases will replace singleplex methods such as direct detection of viral genomes in one single biopsy. miRNAs are stable biomarkers which are not only detectable in tissue samples but also in body fluids. Consequently, the determination of distinct miRNA patterns in e.g. peripheral blood samples will provide a systemic diagnostic approach for the characterization of distinct cardiomyopathies by means of non-invasive methods. This will reduce the number of undiagnosed patients who have to undergo endomyocardial biopsy for final confirmation of their myocardial complaints. The resulting molecular diagnostics will pave the way from biopsy focused interpretation to systemic analysis of cardiomyopathies. To reach this goal, the set-up of modern diagnostics harks back to the broad portfolio of high-end analytical techniques and tools.
文摘IntroductionThe introduction of modern imaging and fast imaging processing has tremendously improved detection and staging of pancreatic cancer. Besides progress in surgical techniques and handling the advances of both computerized tomography (CT) and magnetic resonance imaging (MRI) have remarkably contributed to higher
文摘Alzheimer’s disease (AD) is a leading cause of death, yet there is no disease-modifying drug therapy currently available. It is critical to establish a diagnosis of AD before clinical system onset so that drug therapies can start earlier. Unfortunately, this is not the current standard practice. Artificial intelligence (AI) holds tremendous promise for identifying AD related structural changes in brain scan images. This paper discusses the recent applications and potential future directions for AI in AD diagnostics. Annual brain scanning and computer vision-assisted early diagnosis is encouraged, so that disease-modifying drug therapy could begin earlier in the progressive pathology.
基金the German Research Foundation (DFG)Molecular Pathogenesis and Therapy” (SFB TR19, Z1) two grants of the Federal Ministry of Education
文摘Myocarditis and dilated cardiomyopathy (DCM) are acute or chronic disorders of myocardium. The gold standard for final confirmation of causative reasons of these heart muscle diseases is the endomyocardial biopsy (EMB) analysis. Due to focal pathology, diagnostics are failing if the EMB does not contain the area of interest. Personalized medicine comprises the genetic information together with the phenotypic and environmental factors to yield a tailored healthcare for each individual and removes the limitations of the “one-size-fits-all” therapy approach. This provides the opportunity to translate therapies from bench to bedside, to diagnose and predict disease, and to improve patient-tailored treatments based on the unique signatures of a patient’s disease. Furthermore, novel treatment schedules can be identified which have eventually the chance to enhance long-term survivals. Global biomarkers such as specific gene expression signatures or miRNA profiles not only have the potential to reduce this problem but also add valuable information for individualized therapy decisions. In future, multiplex approaches allowing rapid and absolutely reliable identification of inflammatory or virally-induced myocardial diseases will replace singleplex methods such as direct detection of viral genomes in one single biopsy. Gene or miRNA profiles are upcoming diagnostic biomarkers for cardiomyopathies which are not only detectable in tissue samples but in body fluids as well. Consequently, a systemic diagnostic approach by determination of distinct expression pattern in e.g., peripheral blood samples will support the characterization of distinct cardiomyopathies by means of non-invasive methods.
基金partially funded by the Italian Ministry for University and Research(FIRB project no.RBNE01ABPB)the Cariplo Foundation(project no.2012-0816)
文摘A discharge-produced-plasma(DPP) source emitting in the extreme ultraviolet(EUV) spectral region is running at the ENEA Frascati Research Centre. The plasma is generated in low-pressure xenon gas and efficiently emits 100-ns duration radiation pulses in the 10–20-nm wavelength range, with an energy of 20 m J/shot/sr at a 10-Hz repetition rate. The complex discharge evolution is constantly examined and controlled with electrical measurements, while a nsgated CCD camera allowed observation of the discharge development in the visible, detection of time-resolved plasmacolumn pinching, and optimization of the pre-ionization timing. Accurately calibrated Zr-filtered PIN diodes are used to monitor the temporal behaviour and energy emission of the EUV pulses, while the calibration of a dosimetric film allows quantitative imaging of the emitted radiation. This comprehensive plasma diagnostics has demonstrated its effectiveness in suitably adjusting the source configuration for several applications, such as exposures of photonic materials and innovative photoresists.
基金supported by the National Natural Science Foundation of China(No.81972023)the Natural Science Foundation of Chongqing City,China(No.cstc2021jcyj-msxm0172)+2 种基金the Science and Technology Research Program of Chongqing Education Commission of China(No.KJQN201900425)Creative Research Group of CQ University(China)(No.CXQT21017)the Program for Youth Innovation in Future Medicine from Chongqing Medical University(China).
文摘All cells release extracellular vesicles(EVs)as part of their normal physiology.As one of the subtypes,exosomes(EXOs)have an average size range of approximately 40 nm e160 nm in diameter.Benefiting from their inherent immunogenicity and biocompatibility,the utility of autologous EXOs has the potential for both disease diagnosis/treatment.EXOs are generally employed as“bioscaffolds”and the whole diagnostic and therapeutic effects are mainly ascribed to exogenous cargos on the EXOs,such as proteins,nucleic acids,and chemotherapeutic agents and fluorophores delivered into specific cells or tissues.Surface en-gineering of EXOs for cargo loadings is one of the prerequisites for EXO-mediated diagnosis/treatment.After revisiting EXO-mediated diagnosis/treatment,the most popular strategies to directly undertake loadings of exogenous cargos on EXOs include genetic and chemical en-gineering.Generally,genetically-engineered EXOs can be merely produced by living organisms and intrinsically face some drawbacks.However,chemical methodologies for engineered EXOs diversify cargos and extend the functions of EXOs in the diagnosis/treatment.In this review,we would like to elucidate different chemical advances on the molecular level of EXOs along with the critical design required for diagnosis/treatment.Besides,the prospects of chemical engineering on the EXOs were critically addressed.Nevertheless,the superiority of EXO-medi-ated diagnosis/treatment via chemical engineering remains a challenge in clinical translation and trials.Furthermore,more chemical crosslinking on the EXOs is expected to be explored.Despite substantial claims in the literature,there is currently no review to exclusively summa-rize the chemical engineering to EXOs for diagnosis/treatment.We envision chemical engi-neering of EXOs will encourage more scientists to explore more novel technologies for a wider range of biomedical applications and accelerate the successful translation of EXO-based drug“bioscaffolds”from bench to bedside.
文摘Colorectal cancer(CRC)is one of the most molecularly heterogeneous malignancies,with complexity that extends far beyond traditional histopathological classifications.The consensus molecular subtypes(CMS)established in 2015 brought a marked advancement in the taxonomy of CRC,consolidating six classification systems into four novel subtypes,which focus on vital gene expression patterns and clinical and prognostic outcomes.However,nearly a decade of clinical experience with CMS classification has revealed fundamental limitations that underscore the inadequacy of any single classification system for capturing the full spectrum of CRC biology.The inherent challenges of the current paradigm are multifaceted.In the CMS classification,mixed phenotypes that remain unclassifiable constitute 13%of CRC cases.This reflects the remarkable heterogeneity that CRC shows.The tumor budding regions reflect the molecular shift due to CMS 2 to CMS 4 switching,causing further heterogeneity.Moreover,the reliance on bulk RNA sequencing fails to capture the spatial organization of molecular signatures within tumors and the critical contributions of the tumor microenvironment.Recent technological advances in spatial transcriptomics,singlecell RNA sequencing,and multi-omic integration have revealed the limitations of transcriptome-only classifications.The emergence of CRC intrinsic subtypes that attempt to remove microenvironmental contributions,pathway-derived subtypes,and stem cell-based classifications demonstrates the field’s recognition that multiple complementary classification systems are necessary.These newer molecular subtypes are not discrete categories but biological continua,thus highlighting that the vast molecular landscape is a tapestry of interlinked features,not rigid subtypes.Multiple technical hurdles cause difficulty in implementing the clinical translation of these newer molecular subtypes,including gene signature complexity,platform-dependent variations,and the difficulty of getting and preserving fresh frozen tissue.CMS 4 shows a poor prognostic outcome among the CMS subtypes,while CMS 1 is associated with poor survival in metastatic cases.However,the predictive value for definitive therapy remains subdued.Looking forward,the integration of artificial intelligence,liquid biopsy approaches,and real-time molecular monitoring promises to enable dynamic,multi-dimensional tumor characterization.The temporal and spatial complexity can only be captured by complementary molecular taxonomies rather than a single,unified system of CRC classification.Such an approach recognizes that different clinical questions–prognosis,treatment selection,resistance prediction–may require different molecular lenses,each optimized for specific clinical applications.This editorial advocates for a revolutionary change from pursuing a single“best”classification system toward a diverse approach that welcomes the molecular mosaic of CRC.Only through such comprehensive molecular characterization can we hope to achieve the promise of precision oncology for the diverse spectrum of patients with CRC.
基金supported by the Shanghai Sailing Program(No.21YF1418500)the Shanghai Chenguang Program(No.21CGA70)+1 种基金the three-year action plan for strengthening the construction of the public health system in Shanghai(No.GWVI-11.2-YQ12)Additionally,we would like to thank the Shanghai Oriental Talents Program-Youth Project(Education Platform)for its support of this study.
文摘Aging is a complex biological process characterized by nine hallmarks,including genomic instability,mitochondrial dysfunction,and chronic inflammation,which collectively drive the progression of age-related chronic non-communicable diseases.Phytonutrients,a class of bioactive secondary metabolites abundant in plants,have emerged as a promising research focus for intervening in the aging process due to their multifaceted biological activities.This review systematically elaborates on the molecular mechanisms,key signaling pathways,specifically SIRT1,Nrf2/ARE,and AMPK/mTOR,and the synergistic anti-aging effects of four typical phytonutrient categories:polyphenols(e.g.,resveratrol,quercetin),carotenoids(e.g.,lycopene,astaxanthin),sulfur compounds(e.g.,α-lipoic acid,ergothioneine),and phytoestrogens(e.g.,soybean isoflavones).The evidence indicates that these compounds combat aging through a multidimensional network involving direct antioxidant actions,free radical scavenging,metal chelation,promotion of autophagy,and modulation of inflammatory and epigenetic pathways.Crucially,the review highlights that synergistic interactions between different phytonutrients can significantly enhance their efficacy beyond the effect of any single compound.The aim is to consolidate the anti-aging evidence of phytonutrients and address the current translational challenges,such as bioavailability and a lack of robust human trials,thereby providing a comprehensive theoretical framework for developing effective,diet-centered strategies to promote healthy aging and reduce the global burden of non-communicable diseases.
基金funding from the European Union -NextGenerationEU through the Italian Ministry of University and Research under PRIN PNRR REG D.R.1718-2022– Project number PRJ-1575 INDICA。
文摘Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxanthin. This study investigated the impact of indicaxanthin on neuronal damage and gut microbiota dysbiosis induced by a high-fat diet in mice. The mice were divided into three groups according to different diets: the negative control group was fed a standard diet;the high-fat diet group was fed a high-fat diet;and the high-fat diet + indicaxanthin group was fed a high-fat diet and received indicaxanthin orally(0.86 mg/kg per day) for 4 weeks. Brain apoptosis, redox status, inflammation, and the gut microbiota composition were compared among the different animal groups. The results demonstrated that indicaxanthin treatment reduced neuronal apoptosis by downregulating the expression of proapoptotic genes and increasing the expression of antiapoptotic genes. Indicaxanthin also markedly decreased the expression of neuroinflammatory proteins and genes and inhibited high-fat diet–induced neuronal oxidative stress by reducing reactive oxygen and nitrogen species, malondialdehyde, and nitric oxide levels. In addition, indicaxanthin treatment improved the microflora composition by increasing the abundance of healthy bacterial genera, known as producers of short-chain fatty acids(Lachnospiraceae, Alloprovetella, and Lactobacillus), and by reducing bacteria related to unhealthy profiles(Blautia, Faecalibaculum, Romboutsia and Bilophila). In conclusion, indicaxanthin has a positive effect on high-fat diet–induced neuronal damage and on the gut microbiota composition in obese mice.
文摘BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic malignancies.CASE SUMMARY We herein report a rare case of a 59-year-old female who presented with acute left upper quadrant abdominal pain without any history of trauma.Abdominal imaging demonstrated a heterogeneous splenic lesion with hemoperitoneum,raising clinical suspicion of SSR.Emergency laparotomy revealed a pancreatic tumor invading the spleen and left kidney,with associated splenic rupture and dense adhesions,necessitating en bloc resection of the distal pancreas,spleen,and left kidney.Histopathology revealed a biphasic malignancy composed of moderately differentiated pancreatic ductal adenocarcinoma and an undifferentiated carcinoma with rhabdoid morphology and loss of SMARCB1 expression.Immunohistochemical analysis confirmed complete loss of SMARCB1/INI1 in the undifferentiated component,along with a high Ki-67 index(approximately 80%)and CD10 positivity.The ductal adenocarcinoma component retained SMARCB1/INI1 expression and was positive for CK7 and CK-pan.Transitional zones between the two tumor components suggested progressive dedifferentiation and underlying genomic instability.The patient received adjuvant chemotherapy with gemcitabine and nab-paclitaxel and maintained a satisfactory quality of life at the 6-month follow-up.CONCLUSION This study reports a rare case of SMARCB1/INI1-deficient undifferentiated rhabdoid carcinoma of the pancreas combined with ductal adenocarcinoma,presenting as SSR-an exceptionally uncommon initial manifestation of pancreatic malignancy.
基金supported by the National Natural Science Foundation of China,Nos.82301093(to QC)and 22334004(to HY)the Fuzhou University Fund for Testing Precious Equipment,No.2025T038(to QC)。
文摘The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular recanalization treatments such as thrombolysis and mechanical thrombectomy have achieved some success,reperfusion injury remains a significant contributor to the exacerbation of brain injury.This emphasizes the need for developing neuroprotective strategies to mitigate this type of injury.The purpose of this review was to examine the application of nanotechnology in the treatment of ischemic stroke,covering research progress in nanoparticlebased drug delivery,targeted therapy,and antioxidant and anti-inflammatory applications.Nanobased drug delivery systems offer several advantages compared to traditional therapies,including enhanced blood–brain barrier penetration,prolonged drug circulation time,improved drug stability,and targeted delivery.For example,inorganic nanoparticles,such as those based on CeO_(2),have been widely studied for their strong antioxidant capabilities.Biomimetic nanoparticles,such as those coated with cell membranes,have garnered significant attention owing to their excellent biocompatibility and targeting abilities.Nanoparticles can be used to deliver a wide range of neuroprotective agents,such as antioxidants(e.g.,edaravone),anti-inflammatory drugs(e.g.,curcumin),and neurotrophic factors.Nanotechnology significantly enhances the efficacy of these drugs while minimizing adverse reactions.Although nanotechnology has demonstrated great potential in animal studies,its clinical application still faces several challenges,including the long-term safety of nanoparticles,the feasibility of large-scale production,quality control,and the ability to predict therapeutic effects in humans.In summary,nanotechnology holds significant promise for the treatment of ischemic stroke.Future research should focus on further exploring the mechanisms of action of nanoparticles,developing multifunctional nanoparticles,and validating their safety and efficacy through rigorous clinical trials.Moreover,interdisciplinary collaboration is essential for advancing the use of nanotechnology in stroke treatment.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
文摘Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.
基金supported by the National Natural Science Foundation of China(No.82060388)Science and Technology Department of Guizhou Province(No.QKHJC-ZK[2021-396],QKHJC[2020]1Y424)+2 种基金Healthcare Commission of Guizhou Province(China)(No.GZWJKJ2019-1-192,GZWJKJ2021-310)Guiyang Science and Technology Bureau Guizhou,China(No.ZKH2022-4-3)Guizhou Department and Platform Talents(China)(No.[2018]5766-1).
文摘The flow-through hybridization and gene chip(FHGC)was developed to used in clinical molecular diagnostics for thalassemia,human papillomavirus(HPV),and other dis-eases.FHGC could improve hybridization efficiency and reduce hands-on time,thus improving precision,repro-ducibility,and traceability.Multiple genotypes can be detected simultaneously without incurring high costs.^(1)During the experiment,the polymerase chain reaction(PCR)product or buffer forced through the membrane matrix,PCR products are apprehended by a probe attached to the membrane.
基金supported by the National Natural Science Foundation of China,Nos.82171347,82371362the Natural Science Foundation of Hunan Province,No.2022JJ30971the Scientific Research Project of Hunan Provincial Health Commission of China,No.202204040024(all to GX).
文摘A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus,one of the most common neurological conditions worldwide.In this review,we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition.Then,we outline the definition,classification,and biological role of non-coding RNAs.Subsequently,we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail.Specifically,we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus,including glymphatic pathways,neuroinflammatory processes,and neurological dysplasia,on the basis of the existing evidence.Lastly,we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
基金National Natural Science Foundation of China,Grant/Award Numbers:82202642,82302646,32172296Chongqing Postdoctoral Innovation Talent Support Program,Grant/Award Number:CQBX202218+8 种基金China Postdoctoral Science Foundation,Grant/Award Numbers:2022M710558,2023T160771Special foundation of Chongqing Postdoctoral Research Programme,Grant/Award Number:2021XM2036Talent Training Foundation of Key Laboratory of Clinical Laboratory Diagnostics(Ministry of Education)of College of Laboratory Medicine,Grant/Award Number:JYPY202202Chongqing Postdoctoral Science Foundation,Grant/Award Number:CSTB2022NSCQ-BHX0689National Natural Science Foundation Key Program,Grant/Award Numbers:82230032,81930023Key Project of Chongqing Science and Technology Bureau,Grant/Award Number:CSTC2021jscx-gksb-N0010Chongqing Outstanding Scientists Project(2019)Chongqing Chief Medical Scientist Project(2018)Chongqing Science and Technology Bureau Mountaineering Project,Grant/Award Numbers:cyyy-xkdfjh-jcyj-202301,cyyy-xkdfjh-lcyj-202303,cyyy-xkdfjh-cgzh-202302。
文摘Accurate and sensitive near-infrared(NIR)luminescent lateralflow immunoassay(LFIA)has attracted considerable attention in thefield of point-of-care testing(POCT).However,the detection accuracy and sensitivity are often compromised by the lowfluorescence quantum efficiency of the NIRfluorescent probe.(<10%)Herein,ultrabright NIR AIEgen nanoparticles(PS@AIE830NPs)composed of polystyrene(PS)nanoparticles and NIR aggregation-induced emission luminogen(AIEgen)with the maximum emission at 830 nm(AIE830)is reported,and its poten-tial to promote an accurate and sensitive detection of complex samples by LFIA is described.The relative quantum yield(QY)of the PS@AIE830NPs was 14.76%,which was superior to that of the polymer embedding method and indocyanine green(ICG)-based NIR nanoparticles.The PS@AIE830NPs immunolabeled-LFIA com-bined with laboratory-built NIR-LFIA portable quantitative instruments(detected light range 800 nm)completely eliminated background interference and allowed>highly accurate and sensitive detection without any pre-treatment steps.The limits of detection(LODs)for aflatoxin B1(AFB1)in soy sauce,alpha hemolysin(Hla)of Staphylococcus aureus biomarker in jointfluid,and C-reactive protein(CRP)in human haemolysed samples were 0.01 ng mL^(-1),0.02µg mL^(-1),and 0.156 mg L^(-1),respectively,commensurating with those of the corresponding gold standard assays and covering the detection range of interests.It is anticipated that the ultrabright NIR AIEgen nanoparticles will serve as a universally applicable signal probe for NIR-LFIA diagnostics,promising to expand the range of applications for quantitative detection of complex samples.
文摘Continuous revision of the histologic and stage-wise classification of lung cancer by the World Health Organization (WHO) provides the foundation for therapeutic advances by promoting molecular targeted and immunotherapies and ensuring accurate diagnosis. Cancer epidemiologic data provide helpful information for cancer prevention, diagnosis, and management, supporting health-care interventions. Global cancer mortality projections from 2016 to 2060 show that cancer will overtake ischemic heart diseases (IHD) as the leading cause of death (18.9 million) immediately after 2030, surpassing non-small cell lung cancer (NSCLC), which accounts for 85 percent of lung cancers. The clinical stage at the diagnosis is the main prognostic factor in NSCLC therapies. Advanced early diagnostic methods are essential as the initial stages of cancer show reduced mortality compared to the advanced stages. Sophisticated approaches to proper histological classification and NSCLC management have improved clinical efficiency. Although immune checkpoint inhibitors (ICIs) and targeted molecular therapies have refined the therapeutic management of late-stage NSCLC, the specificity and sensitivity of cancer biomarkers should be improved by focusing on prospective studies, followed by their use as therapeutic tools. The liquid biopsy candidates such as circulating tumor cells (CTCs), circulating cell-free tumor DNA (cfDNA), tumor educated platelets (TEP), and extracellular vesicles (EVs) possess cancer-derived biomolecules and aid in tracing: driver mutations leading to cancer, acquired resistance caused by various generations of therapeutic agents, refractory disease, prognosis, and surveillance.