In order to stabilise the operation of the blast furnace and to raise its operation efficiency,research works for the application of microwave and laser scanning technologies to the measurement have been intensively c...In order to stabilise the operation of the blast furnace and to raise its operation efficiency,research works for the application of microwave and laser scanning technologies to the measurement have been intensively carried out at China Steel Corporation(CSC).To monitor the burden profile during the operation,a microwave burden profile measuring system was developed.The system consists of a radar unit,a signal processing system, and a driving device which is capable of rotating the radar to scan the burden surface in a specified direction.A nitrogen cooling system was designed to protect the measurement system.A prototype burden profile meter was successfully tested in No.1 blast furnace in 2008,and a permanent one was installed at No.3 blast furnace.The system has provided useful information for adjusting the charging sequence in No.3 blast furnace.For another application,3 - D laser scanning technology is employed to monitor the blast furnace lining condition.To this end,a data registration method has been developed,through which two measured range images sensed at different period and locations can be fitted into the same coordinate system.In practice,the erosion of the blast furnace lining can be estimated when the current inner profile is compared with that taken before the blow-in operation. This technology is also adopted to evaluate the performance of gunning operation in the blast furnaces at CSC.展开更多
When sinters are filled into the sinter cooler from the sintering machine, it is commonly seen that, due to segregation effects, sinters of larger size usually accumulate closer to the inner wall of the sinter cooler,...When sinters are filled into the sinter cooler from the sintering machine, it is commonly seen that, due to segregation effects, sinters of larger size usually accumulate closer to the inner wall of the sinter cooler, whereas those of smaller size are to the outer wall. This nonuniform distribution of sinters has led to uneven cooling effect throughout the cooler. This causes the sinters leaving the cooler at a large temperature difference. This undesired temperature difference leads to the deformation and even the destruction of the conveyors. The computational fluid dynamics (CFD) technique was used in the present work to investigate the heat and fluid flow phenomena within the sinter cooler corresponding to the different distribution of sinter layer porosity, which was highly dependent on the arrangement and orientation of sinters within the sinter cooler. It is confirmed that a high mass flow rate within the sinter layer causes a low temperature region and vice versa. The flow fields for vertically reducing porosity distribution and random distribution are almost identical indicating the relative insignificance of convective heat transfer mechanism.展开更多
The objective of this study is to prepare lan- thanum and cerium metals by fused salt electrolysis of their anhydrous chloride in molten media such as LiCl-KCl, NaCl-KCl, KCl, NaCl, and LiCl and to characterize the me...The objective of this study is to prepare lan- thanum and cerium metals by fused salt electrolysis of their anhydrous chloride in molten media such as LiCl-KCl, NaCl-KCl, KCl, NaCl, and LiCl and to characterize the metal deposit by X-ray diffraction, energy dispersive X-ray fluorescence, and inductive coupled plasma-atomic emis- sion spectroscopy. Deposit metal of purity more than 99 % was obtained in each of the experiments. The entire process starting from preparation of anhydrous lanthanum/cerium chloride to electrolysis yielding of metal deposits has been described. The effect of process parameters such as tem- perature, electrolyte composition, and current density on the current efficiency was studied. All these parameters were varied to get the highest current efficiency and metal yield. The major non-rare earth impurities with the deposit are found to be Fe, Cr, and Ni along with - 1× 10^-3 of total gaseous impurities.展开更多
The lattice expansion caused by the reduction of Ce(Ⅳ)to Ce(Ⅲ)impeded the development of the CeO_(2)as an effective electrode material for electrochemical supercapacitors.Herein,we prepared CeO_(2)-clay composites t...The lattice expansion caused by the reduction of Ce(Ⅳ)to Ce(Ⅲ)impeded the development of the CeO_(2)as an effective electrode material for electrochemical supercapacitors.Herein,we prepared CeO_(2)-clay composites through a one-step hydrothermal method.The interlayer structures of clays efficiently accommodate volume changes induced by crystal lattice expansion to achieve ultra-long cycle stability.After 60000 charge-discharge cycles,the capacitance retention rate of the assembled asymmetric supercapacitors is as high as~-100%.The key findings of this work reveal the potential application of clays in achieving ultralong cycle stability of the CeO_(2)electrode material,paving the way for further application of the CeO_(2)in electrochemical energy storage.展开更多
Sinking columns are one of the most hazardous geological structures in north Chine typed coal fields. To understand the sinking column formation, to judge if the columns are hazardous or not, the inner circle mechanis...Sinking columns are one of the most hazardous geological structures in north Chine typed coal fields. To understand the sinking column formation, to judge if the columns are hazardous or not, the inner circle mechanism of groundwater in forming sinking columns in the relatively isolated areas was proposed according to the investigation on formation or distribution of sinking columns in some north China typed coal fields, such as Fengfeng, Xiangtai, Huaibei, Yangquan and so on. The heat generated by magma energized groundwater circulation and developed limestone karst in the relatively isolated areas. The CaCO3 solution accelerated by geothermal abnormality, the effect of high content of CO2 on dissolution and saturation of CaCO3 were discussed. Compared the forming conditions of the sinking columns developed in other coal mining areas in north China coal field, the paper deduced that the above factors collude karst development and sinking column formation, the columns in current geothermal areas are permeable and those in high coal rank areas or in paleo abnormally geothermal areas. The paper suggested that the sinking columns in the current abnormally geothermal areas were permeable, but those in the areas with high coal rank were not on contract.展开更多
The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the ca...The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the case of sensor/actuator failures.The method uses model-based tracking concept to relax the demand on sensor data.The condition for successful operation of the stated scheme is derived,and the concept is demonstrated through simulation by applying it to the model of microtron,transport line-1 and booster of indus accelerator.The results show that this approach is very effective in transport line control during sensor/actuator failures.展开更多
The number of patients with lifestyle-related diseases, such as cardiovascular disease, diabetes mellitus, hypertension, atherosclerosis, and cancer, is increasing all over the world, and that of diabetics is increasi...The number of patients with lifestyle-related diseases, such as cardiovascular disease, diabetes mellitus, hypertension, atherosclerosis, and cancer, is increasing all over the world, and that of diabetics is increasing especially rapidly. Diabetic animal models have played a key role in elucidating the etiology of diabetes and developing anti-diabetic drugs. In this review, we overviewed characteristics of diabetic mouse models and pharmacological evaluation using the diabetic models.展开更多
Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element ana...Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.展开更多
Despite advancement in food analytical platforms and availability of CODEX standard,the fraud honey relentlessly remains as global issue.Even with stringent guidelines,controlling the incoming honey product at ground ...Despite advancement in food analytical platforms and availability of CODEX standard,the fraud honey relentlessly remains as global issue.Even with stringent guidelines,controlling the incoming honey product at ground level proved to be challenging and difficult to tackle.While most analytical platforms are powerful enough to detect counterfeit honey products,there is also a need to develop a rapid screening test to support field regulatory activity.A chemical reagent developed based on biochemistry principle has proved to be able to differentiate synthetic honey product from its raw counterpart.The reaction required only three drops of honey product to react with few drops of reagent mixtures which resulted in a change of color and precipitation of proteins and other molecules within 2 min reaction.Test performed on raw honey samples inclusive of several stingless bees and Apis species honey resulted in a precipitation as compared to fake honey generated from a blend of white sugar,golden syrup,vinegar,lime juice and plantain which resulted in clear organic phase indicating missing natural honey biological matters.The difference between raw honey and fake honey reaction with the reagents can be utilized for real time on field screening activity before proceeding with authentication using complex analytical platforms.展开更多
Rabies virus presents a global public health problem. Our current understanding of the molecular determinants of rabies virulence stems from rodent models and laboratory strains of the virus, however, it is unclear ho...Rabies virus presents a global public health problem. Our current understanding of the molecular determinants of rabies virulence stems from rodent models and laboratory strains of the virus, however, it is unclear how well rodent models represent viral response in natural reservoirs. Here, we examined interactions between the raccoon variant of rabies virus (RRV) and its natural host, raccoons, to gain a better understanding of molecular determinants of virulence in this system. We found expression patterns of RRV genes under tight control until the virus reached the central nervous system where replication increased significantly. Further, our examination of viral variants within an individual revealed that variant diversity may have an effect on virulence. We found that a mutation at a region of a T helper cell epitope on the nucleoprotein was associated with viral challenge outcomes and could be associated with RRV pathogenicity.展开更多
The hot-wire type anemometers were used for measuring the velocity of effective air flowing through sinter bed in this study.Meanwhile,microphones were installed beside the pathway and close to the outer sidewall of t...The hot-wire type anemometers were used for measuring the velocity of effective air flowing through sinter bed in this study.Meanwhile,microphones were installed beside the pathway and close to the outer sidewall of travelling pallets for monitoring sound pressure generated by an abnormal air leakage.For identifying the passing pallet,a thermal-resistant type RFID technology was adopted.Based on the measured data via anemometers,the air leakage rate of sintering machine was calculated with the mass balance method,and pallets with the abnormal leakage can be detected and ranked in the severity of leakage from the measured sound pressure with the relevant criteria.In addition,for examining the leakage situation,this study set up a capillary type of differential pressure gauge to double cone valve(DCV)below the electrostatic precipitator(EP)in sintering plant for collecting the larger dust.The criteria of determining leaked DCV and the patterns for replacing the DCV were proposed to develop a detecting and predicting system on the air leakage into dust collectors of sinter machine.It offered field staff a basis of maintaining or renewing DCV via a warning reminding and reducing air leakage to increase EP efficiency for avoiding the dust emission from the stack.These technologies had been implemented in the sintering plants of China Steel Corporation,and they can effectively reduce the air leakage rate by5%at least and further decrease the electricity consumption of the suction fan and coke rate,increase the production for the sintering machine.展开更多
The mixing phenomena of a two-layer density-stratified fluid induced by a jet in a tank are experimentally investigated. The upper and lower fluids are water and a NaCl-water solution, respectively, with the lower flu...The mixing phenomena of a two-layer density-stratified fluid induced by a jet in a tank are experimentally investigated. The upper and lower fluids are water and a NaCl-water solution, respectively, with the lower fluid issued vertically upward from a nozzle at the bottom of the tank. The jet Reynolds number Re, defined by the jet velocity and the water kinematic viscosity, ranges from 90 to 4,200. The mass concentration of the NaCl-water solution Co is less than 0.08. The flow visualization makes clear the jet behavior relative to the density interface between the upper and lower fluids. The measurement of the concentration distribution of the water paint issued with the jet highlights the effects of Re and Co on the mixing between the jet and the ambient fluid. The measurement of the fluid velocity distribution with a PIV (particle image velocimetry) system successfully elucidates the relationship between the velocity field and the resultant mixing.展开更多
Hypertrophic scar and keloid are a major medical problem,which may lead to disfigurement,growth restriction,and permanent loss of function,causing severe physical,psychological,and economic burdens.1 When skin injury ...Hypertrophic scar and keloid are a major medical problem,which may lead to disfigurement,growth restriction,and permanent loss of function,causing severe physical,psychological,and economic burdens.1 When skin injury occurs,the wound heals through a dynamic series of physiological events,including blood clotting,granulation tissue formation,re-epithelialization,and extracellular matrix remodeling.2 However,the newly formed extracellular matrix in a scar may never achieve the flexibility or strength of the original tissue.展开更多
Skin serves as the first-order protective barrier against the environment and any significant disruptions in skin integrity must be promptly restored.Despite significant advances in therapeutic strategies,effective ma...Skin serves as the first-order protective barrier against the environment and any significant disruptions in skin integrity must be promptly restored.Despite significant advances in therapeutic strategies,effective management of large chronic skin wounds remains a clinical challenge.Dermal fibroblasts are the primary cell type responsible for remodeling the extracellular matrix(ECM)in wound healing.Here,we investigated whether ECM derived from exogenous fibroblasts,in combination with keratinocytes,promoted scarless cutaneous wound healing.To overcome the limited lifespan of primary dermal fibroblasts,we established reversibly immortalized mouse dermal fibroblasts(imDFs),which were non-tumorigenic,expressed dermal fibroblast markers,and were responsive to TGF-β1 stimulation.The decellularized ECM prepared from both imDFs and primary dermal fi-broblasts shared similar expression profiles of extracellular matrix proteins and promoted the proliferation of keratinocyte(iKera)cells.The imDFs-derived ECM solicited no local immune response.While the ECM and to a lesser extent imDFs enhanced skin wound healing with excessive fibrosis,a combination of imDFs-derived ECM and iKera cells effectively promoted the re-epithelization and scarless healing of full-thickness skin wounds.These findings strongly suggest that dermal fibroblast-derived ECM,not fibroblasts themselves,may synergize with keratinocytes in regulating scarless healing and re-epithelialization of skin wounds.Given its low immu-nogenic nature,imDFs-derived ECM should be a valuable resource of skin-specific biomaterial for wound healing and skin tissue engineering.展开更多
While the human genome is pervasively transcribed,<2%of the human genome is transcribed into protein-coding mRNAs,leaving most of the transcripts as noncoding RNAs,such as microRNAs and long-noncoding RNAs(lncRNAs)...While the human genome is pervasively transcribed,<2%of the human genome is transcribed into protein-coding mRNAs,leaving most of the transcripts as noncoding RNAs,such as microRNAs and long-noncoding RNAs(lncRNAs),which are critical components of epigenetic regulation.lncRNAs are emerging as critical regulators of gene expression and genomic stability.However,it remains largely unknown about how lncRNAs are regulated.Here,we develop a highly sensitive and dynamic reporter that allows us to identify and/or monitor negative modulators of lncRNA transcript levels in a high throughput fashion.Specifically,we engineer a fluorescent fusion protein by fusing three copies of the PEST destruction domain of mouse ornithine decarboxylase(MODC)to the C-terminal end of the codon-optimized bilirubin-inducible fluorescent protein,designated as dBiFP,and show that the dBiFP protein is highly destabilized,compared with the commonly-used eGFP protein.We further demonstrate that the dBiFP signal is effectively down-regulated when the dBiFP and mouse lncRNA H19 chimeric transcript is silenced by mouse H19-specific siRNAs.Therefore,our results strongly suggest that the dBiFP fusion protein may serve as a sensitive and dynamic transcript reporter to monitor the inhibition of lncRNAs by microRNAs,synthetic regulatory RNA molecules,RNA binding proteins,and/or small molecule inhibitors so that novel and efficacious inhibitors targeting the epigenetic circuit can be discovered to treat human diseases such as cancer and other chronic disorders.展开更多
The authors regret having an image assembly error in Figure 5Ca,in which the image for the "Oh dBiFP-AdRFp"group was erroneously duplicated with an overlapping image from the"36h BiFP dBIFP-AdR-simH19&q...The authors regret having an image assembly error in Figure 5Ca,in which the image for the "Oh dBiFP-AdRFp"group was erroneously duplicated with an overlapping image from the"36h BiFP dBIFP-AdR-simH19"group.We confirm the error is restricted to the image assembly,and the underlying data and conclusions are correct and unchanged.The authors would like to apologize for any inconvenience caused.展开更多
The rapid diffusion of renewable energy boosts the wide deployment of large-scale energy storage system.With the low cost and high crustal abundance,sodium-ion battery(SIB)technology is expected to become a dominant t...The rapid diffusion of renewable energy boosts the wide deployment of large-scale energy storage system.With the low cost and high crustal abundance,sodium-ion battery(SIB)technology is expected to become a dominant technology in that area in the future.Toward the practical application,novel cathode materials are urged to develop that show high energy density without sacrificing their cost and benignity to the environment.While the years of many studies,this still remains a huge challenge to battery scientists.In this review,we discuss recent breakthroughs in SIB cathode materials with high energy density,namely fluorphosphates and fluorosulfates.The design of materials,the crystal structure,the electrochemical performance,and the underlaying intercalation mechanism are systematically reviewed.Useful strategies and research directions are also provided to advance future high-energy,low-cost,and ecofriendly cathode materials for next generation SIB.展开更多
Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines.However,from a translational point of view,these approaches are challenging due to the so...Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines.However,from a translational point of view,these approaches are challenging due to the sourcing and quality of the biologic,unpredictable immune responses,complex regulatory paths,and high costs.We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system(CSS)that offers distinct advantages for clinical translation.The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite.Using a micro-continuous liquid interface production 3D printer,we fabricate a precise porous ceramic scaffold with 60 wt%hydroxyapatite resembling natural bone.The resulting scaffold integrates with a thermoresponsive hydrogel composite in situ to fit the defect,which is expected to enhance surface contact with surrounding tissue and facilitate biointegration.The antioxidative properties of citrate polymers prevent long-term inflammatory responses.The CSS stimulates osteogenesis in vitro and in vivo.Within 4 weeks in a calvarial critical-sized bone defect model,the CSS accelerated ECM deposition(8-fold)and mineralized osteoid(69-fold)compared to the untreated.Through spatial transcriptomics,we demonstrated the comprehensive biological processes of CSS for prompt osseointegration.Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages,potentially expediting clinical application for bone reconstruction surgeries.展开更多
文摘In order to stabilise the operation of the blast furnace and to raise its operation efficiency,research works for the application of microwave and laser scanning technologies to the measurement have been intensively carried out at China Steel Corporation(CSC).To monitor the burden profile during the operation,a microwave burden profile measuring system was developed.The system consists of a radar unit,a signal processing system, and a driving device which is capable of rotating the radar to scan the burden surface in a specified direction.A nitrogen cooling system was designed to protect the measurement system.A prototype burden profile meter was successfully tested in No.1 blast furnace in 2008,and a permanent one was installed at No.3 blast furnace.The system has provided useful information for adjusting the charging sequence in No.3 blast furnace.For another application,3 - D laser scanning technology is employed to monitor the blast furnace lining condition.To this end,a data registration method has been developed,through which two measured range images sensed at different period and locations can be fitted into the same coordinate system.In practice,the erosion of the blast furnace lining can be estimated when the current inner profile is compared with that taken before the blow-in operation. This technology is also adopted to evaluate the performance of gunning operation in the blast furnaces at CSC.
文摘When sinters are filled into the sinter cooler from the sintering machine, it is commonly seen that, due to segregation effects, sinters of larger size usually accumulate closer to the inner wall of the sinter cooler, whereas those of smaller size are to the outer wall. This nonuniform distribution of sinters has led to uneven cooling effect throughout the cooler. This causes the sinters leaving the cooler at a large temperature difference. This undesired temperature difference leads to the deformation and even the destruction of the conveyors. The computational fluid dynamics (CFD) technique was used in the present work to investigate the heat and fluid flow phenomena within the sinter cooler corresponding to the different distribution of sinter layer porosity, which was highly dependent on the arrangement and orientation of sinters within the sinter cooler. It is confirmed that a high mass flow rate within the sinter layer causes a low temperature region and vice versa. The flow fields for vertically reducing porosity distribution and random distribution are almost identical indicating the relative insignificance of convective heat transfer mechanism.
文摘The objective of this study is to prepare lan- thanum and cerium metals by fused salt electrolysis of their anhydrous chloride in molten media such as LiCl-KCl, NaCl-KCl, KCl, NaCl, and LiCl and to characterize the metal deposit by X-ray diffraction, energy dispersive X-ray fluorescence, and inductive coupled plasma-atomic emis- sion spectroscopy. Deposit metal of purity more than 99 % was obtained in each of the experiments. The entire process starting from preparation of anhydrous lanthanum/cerium chloride to electrolysis yielding of metal deposits has been described. The effect of process parameters such as tem- perature, electrolyte composition, and current density on the current efficiency was studied. All these parameters were varied to get the highest current efficiency and metal yield. The major non-rare earth impurities with the deposit are found to be Fe, Cr, and Ni along with - 1× 10^-3 of total gaseous impurities.
基金supported by the Science and Technology Project of Sichuan Province(2020YJ0163)。
文摘The lattice expansion caused by the reduction of Ce(Ⅳ)to Ce(Ⅲ)impeded the development of the CeO_(2)as an effective electrode material for electrochemical supercapacitors.Herein,we prepared CeO_(2)-clay composites through a one-step hydrothermal method.The interlayer structures of clays efficiently accommodate volume changes induced by crystal lattice expansion to achieve ultra-long cycle stability.After 60000 charge-discharge cycles,the capacitance retention rate of the assembled asymmetric supercapacitors is as high as~-100%.The key findings of this work reveal the potential application of clays in achieving ultralong cycle stability of the CeO_(2)electrode material,paving the way for further application of the CeO_(2)in electrochemical energy storage.
文摘Sinking columns are one of the most hazardous geological structures in north Chine typed coal fields. To understand the sinking column formation, to judge if the columns are hazardous or not, the inner circle mechanism of groundwater in forming sinking columns in the relatively isolated areas was proposed according to the investigation on formation or distribution of sinking columns in some north China typed coal fields, such as Fengfeng, Xiangtai, Huaibei, Yangquan and so on. The heat generated by magma energized groundwater circulation and developed limestone karst in the relatively isolated areas. The CaCO3 solution accelerated by geothermal abnormality, the effect of high content of CO2 on dissolution and saturation of CaCO3 were discussed. Compared the forming conditions of the sinking columns developed in other coal mining areas in north China coal field, the paper deduced that the above factors collude karst development and sinking column formation, the columns in current geothermal areas are permeable and those in high coal rank areas or in paleo abnormally geothermal areas. The paper suggested that the sinking columns in the current abnormally geothermal areas were permeable, but those in the areas with high coal rank were not on contract.
文摘The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the case of sensor/actuator failures.The method uses model-based tracking concept to relax the demand on sensor data.The condition for successful operation of the stated scheme is derived,and the concept is demonstrated through simulation by applying it to the model of microtron,transport line-1 and booster of indus accelerator.The results show that this approach is very effective in transport line control during sensor/actuator failures.
文摘The number of patients with lifestyle-related diseases, such as cardiovascular disease, diabetes mellitus, hypertension, atherosclerosis, and cancer, is increasing all over the world, and that of diabetics is increasing especially rapidly. Diabetic animal models have played a key role in elucidating the etiology of diabetes and developing anti-diabetic drugs. In this review, we overviewed characteristics of diabetic mouse models and pharmacological evaluation using the diabetic models.
文摘Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.
文摘Despite advancement in food analytical platforms and availability of CODEX standard,the fraud honey relentlessly remains as global issue.Even with stringent guidelines,controlling the incoming honey product at ground level proved to be challenging and difficult to tackle.While most analytical platforms are powerful enough to detect counterfeit honey products,there is also a need to develop a rapid screening test to support field regulatory activity.A chemical reagent developed based on biochemistry principle has proved to be able to differentiate synthetic honey product from its raw counterpart.The reaction required only three drops of honey product to react with few drops of reagent mixtures which resulted in a change of color and precipitation of proteins and other molecules within 2 min reaction.Test performed on raw honey samples inclusive of several stingless bees and Apis species honey resulted in a precipitation as compared to fake honey generated from a blend of white sugar,golden syrup,vinegar,lime juice and plantain which resulted in clear organic phase indicating missing natural honey biological matters.The difference between raw honey and fake honey reaction with the reagents can be utilized for real time on field screening activity before proceeding with authentication using complex analytical platforms.
文摘Rabies virus presents a global public health problem. Our current understanding of the molecular determinants of rabies virulence stems from rodent models and laboratory strains of the virus, however, it is unclear how well rodent models represent viral response in natural reservoirs. Here, we examined interactions between the raccoon variant of rabies virus (RRV) and its natural host, raccoons, to gain a better understanding of molecular determinants of virulence in this system. We found expression patterns of RRV genes under tight control until the virus reached the central nervous system where replication increased significantly. Further, our examination of viral variants within an individual revealed that variant diversity may have an effect on virulence. We found that a mutation at a region of a T helper cell epitope on the nucleoprotein was associated with viral challenge outcomes and could be associated with RRV pathogenicity.
文摘The hot-wire type anemometers were used for measuring the velocity of effective air flowing through sinter bed in this study.Meanwhile,microphones were installed beside the pathway and close to the outer sidewall of travelling pallets for monitoring sound pressure generated by an abnormal air leakage.For identifying the passing pallet,a thermal-resistant type RFID technology was adopted.Based on the measured data via anemometers,the air leakage rate of sintering machine was calculated with the mass balance method,and pallets with the abnormal leakage can be detected and ranked in the severity of leakage from the measured sound pressure with the relevant criteria.In addition,for examining the leakage situation,this study set up a capillary type of differential pressure gauge to double cone valve(DCV)below the electrostatic precipitator(EP)in sintering plant for collecting the larger dust.The criteria of determining leaked DCV and the patterns for replacing the DCV were proposed to develop a detecting and predicting system on the air leakage into dust collectors of sinter machine.It offered field staff a basis of maintaining or renewing DCV via a warning reminding and reducing air leakage to increase EP efficiency for avoiding the dust emission from the stack.These technologies had been implemented in the sintering plants of China Steel Corporation,and they can effectively reduce the air leakage rate by5%at least and further decrease the electricity consumption of the suction fan and coke rate,increase the production for the sintering machine.
文摘The mixing phenomena of a two-layer density-stratified fluid induced by a jet in a tank are experimentally investigated. The upper and lower fluids are water and a NaCl-water solution, respectively, with the lower fluid issued vertically upward from a nozzle at the bottom of the tank. The jet Reynolds number Re, defined by the jet velocity and the water kinematic viscosity, ranges from 90 to 4,200. The mass concentration of the NaCl-water solution Co is less than 0.08. The flow visualization makes clear the jet behavior relative to the density interface between the upper and lower fluids. The measurement of the concentration distribution of the water paint issued with the jet highlights the effects of Re and Co on the mixing between the jet and the ambient fluid. The measurement of the fluid velocity distribution with a PIV (particle image velocimetry) system successfully elucidates the relationship between the velocity field and the resultant mixing.
基金supported in part by research grants from the Natural Science Foundation of China(No.82102696 to J.F.)the Chongqing Natural Science Foundation of China(No.2024NSCQ-MSX0073 to J.F.)+1 种基金the US National Institutes of Health(No.CA226303 to T.C.H.DE030480 to R.R.R.).
文摘Hypertrophic scar and keloid are a major medical problem,which may lead to disfigurement,growth restriction,and permanent loss of function,causing severe physical,psychological,and economic burdens.1 When skin injury occurs,the wound heals through a dynamic series of physiological events,including blood clotting,granulation tissue formation,re-epithelialization,and extracellular matrix remodeling.2 However,the newly formed extracellular matrix in a scar may never achieve the flexibility or strength of the original tissue.
基金supported in part by research grants from the Natural Science Foundation of China(82102696,JF)Chongqing Nat-ural Science Foundation(2024NSCQ-MSX0073,JF)+3 种基金the National Institutes of Health(CA226303 to TCH,and DE030480 to RRR)supported in part by The University of Chicago Comprehensive Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430supported by the Mabel Green Myers Research Endowment Fund and The University of Chicago Orthopaedics Alumni Fund.
文摘Skin serves as the first-order protective barrier against the environment and any significant disruptions in skin integrity must be promptly restored.Despite significant advances in therapeutic strategies,effective management of large chronic skin wounds remains a clinical challenge.Dermal fibroblasts are the primary cell type responsible for remodeling the extracellular matrix(ECM)in wound healing.Here,we investigated whether ECM derived from exogenous fibroblasts,in combination with keratinocytes,promoted scarless cutaneous wound healing.To overcome the limited lifespan of primary dermal fibroblasts,we established reversibly immortalized mouse dermal fibroblasts(imDFs),which were non-tumorigenic,expressed dermal fibroblast markers,and were responsive to TGF-β1 stimulation.The decellularized ECM prepared from both imDFs and primary dermal fi-broblasts shared similar expression profiles of extracellular matrix proteins and promoted the proliferation of keratinocyte(iKera)cells.The imDFs-derived ECM solicited no local immune response.While the ECM and to a lesser extent imDFs enhanced skin wound healing with excessive fibrosis,a combination of imDFs-derived ECM and iKera cells effectively promoted the re-epithelization and scarless healing of full-thickness skin wounds.These findings strongly suggest that dermal fibroblast-derived ECM,not fibroblasts themselves,may synergize with keratinocytes in regulating scarless healing and re-epithelialization of skin wounds.Given its low immu-nogenic nature,imDFs-derived ECM should be a valuable resource of skin-specific biomaterial for wound healing and skin tissue engineering.
基金The reported work was supported in part by research grants from the National Institutes of Health(AT004418,DE020140 to TCH and RRR)the US Department of Defense(OR130096 to JMW)+5 种基金the Scoliosis Research Society(TCH and MJL)the National Key Research and Development Program of China(2016YFC1000803 and 2011CB707906 to TCH)the National Natural Science Foundation of China(#81201916 to XW)ZZ was a recipient of protectorate fellowship from China Scholarship CouncilThis project was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430.
文摘While the human genome is pervasively transcribed,<2%of the human genome is transcribed into protein-coding mRNAs,leaving most of the transcripts as noncoding RNAs,such as microRNAs and long-noncoding RNAs(lncRNAs),which are critical components of epigenetic regulation.lncRNAs are emerging as critical regulators of gene expression and genomic stability.However,it remains largely unknown about how lncRNAs are regulated.Here,we develop a highly sensitive and dynamic reporter that allows us to identify and/or monitor negative modulators of lncRNA transcript levels in a high throughput fashion.Specifically,we engineer a fluorescent fusion protein by fusing three copies of the PEST destruction domain of mouse ornithine decarboxylase(MODC)to the C-terminal end of the codon-optimized bilirubin-inducible fluorescent protein,designated as dBiFP,and show that the dBiFP protein is highly destabilized,compared with the commonly-used eGFP protein.We further demonstrate that the dBiFP signal is effectively down-regulated when the dBiFP and mouse lncRNA H19 chimeric transcript is silenced by mouse H19-specific siRNAs.Therefore,our results strongly suggest that the dBiFP fusion protein may serve as a sensitive and dynamic transcript reporter to monitor the inhibition of lncRNAs by microRNAs,synthetic regulatory RNA molecules,RNA binding proteins,and/or small molecule inhibitors so that novel and efficacious inhibitors targeting the epigenetic circuit can be discovered to treat human diseases such as cancer and other chronic disorders.
文摘The authors regret having an image assembly error in Figure 5Ca,in which the image for the "Oh dBiFP-AdRFp"group was erroneously duplicated with an overlapping image from the"36h BiFP dBIFP-AdR-simH19"group.We confirm the error is restricted to the image assembly,and the underlying data and conclusions are correct and unchanged.The authors would like to apologize for any inconvenience caused.
基金supported by the National Natural Science Foundation of China(No.22179098).
文摘The rapid diffusion of renewable energy boosts the wide deployment of large-scale energy storage system.With the low cost and high crustal abundance,sodium-ion battery(SIB)technology is expected to become a dominant technology in that area in the future.Toward the practical application,novel cathode materials are urged to develop that show high energy density without sacrificing their cost and benignity to the environment.While the years of many studies,this still remains a huge challenge to battery scientists.In this review,we discuss recent breakthroughs in SIB cathode materials with high energy density,namely fluorphosphates and fluorosulfates.The design of materials,the crystal structure,the electrochemical performance,and the underlaying intercalation mechanism are systematically reviewed.Useful strategies and research directions are also provided to advance future high-energy,low-cost,and ecofriendly cathode materials for next generation SIB.
基金National Research Foundation of Korea(2021R1A6A3A14039205)(Mirae Kim)National Institutes of Health/National Institute of Dental and Craniofacial Research(R01DE030480)(Russell R.Reid).
文摘Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines.However,from a translational point of view,these approaches are challenging due to the sourcing and quality of the biologic,unpredictable immune responses,complex regulatory paths,and high costs.We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system(CSS)that offers distinct advantages for clinical translation.The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite.Using a micro-continuous liquid interface production 3D printer,we fabricate a precise porous ceramic scaffold with 60 wt%hydroxyapatite resembling natural bone.The resulting scaffold integrates with a thermoresponsive hydrogel composite in situ to fit the defect,which is expected to enhance surface contact with surrounding tissue and facilitate biointegration.The antioxidative properties of citrate polymers prevent long-term inflammatory responses.The CSS stimulates osteogenesis in vitro and in vivo.Within 4 weeks in a calvarial critical-sized bone defect model,the CSS accelerated ECM deposition(8-fold)and mineralized osteoid(69-fold)compared to the untreated.Through spatial transcriptomics,we demonstrated the comprehensive biological processes of CSS for prompt osseointegration.Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages,potentially expediting clinical application for bone reconstruction surgeries.