Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
In this paper,the failure features of strip tensile specimen were observed and analysed for need-le-punched non-woven geotextiles.A mechanical model which expresses the relation between thetensile modulus,the strip sp...In this paper,the failure features of strip tensile specimen were observed and analysed for need-le-punched non-woven geotextiles.A mechanical model which expresses the relation between thetensile modulus,the strip specimen size,contraction factor and the tensile strength of non-wovenfabric was derived.The theoretical prediction showed that the main factor influencing tensilestrength of non-woven geotextile specimens with different size is the contraction factor of specimenor the specimen aspect ratio(width/length).The larger the aspect ratio,the higher the tensilestrength test value of geotextiles,but the experiments showed that the specimen tensile strength isnot increased with increasing the width of specimen.The reason was discussed and it seemed thatthe deviation could be served as an indication of the degree of imperfectness of the non-wovenstructure.展开更多
The objective of this paper is to establish reliable prediction equations relating cotton fibreproperties measured by HVI system and yarn quality,A useful statistical method is adopted for de-veloping a multiple regre...The objective of this paper is to establish reliable prediction equations relating cotton fibreproperties measured by HVI system and yarn quality,A useful statistical method is adopted for de-veloping a multiple regression model interpreting the relation between the data of Spinlab HVIfibre properties and quality parameters of yarn STQ (Strength Tex Quotient).The percent relativecontribution of a fibre property with respect of STQ is also assessed.The results show that the totalcontribution of the HVI measured fibre properties can account for 77.4% of known variation ofyarn STQ.The main feature of the approach is its flexibility in accommodating all fibre properties.The examination of regression equation showed that it could be well applied to predict STQ ofyarns spun from the same spinning system,but,for different spinning systems and also for yarns ofdifferent linear density,modification of the equation would be needed.展开更多
This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for an...This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for analyzing the experimental results.It is shown that,with regard to the specifications of the sawtooth clothing of the combing rol-ler,large working angle,large tooth pitch,fine tooth shape,short tooth height,smooth finish andgood wearability are of benefit to improving the spinning stability and the spun yarn properties.The pinned combing roller,however,regardless of its complicated process of production,is sug-gested to be preferred for spinning the pure ramie noil rotor-spun yarns.The handling mode used in this work is efficient in improving the reliability and objectivity ofthe conclusions and can be used for solving the similar problems.展开更多
This paper reports the optimum design of combing roller speed with reference to yielding 6-13 Ne(98.4—45.4 tex) pure ramie noil rotor-spun yarns. The universal rotatable composite design is adopted to get the highly ...This paper reports the optimum design of combing roller speed with reference to yielding 6-13 Ne(98.4—45.4 tex) pure ramie noil rotor-spun yarns. The universal rotatable composite design is adopted to get the highly precise regression equations, in which the variables are combing roller speed and yarn linear density considered to be the main technological parameters of combing roller and, the responses are the evaluation indexes concerning spinning stability, fiber length distribution of fibre ring from rotor groove and yarn properties. Based on these regression equations, the contours are plotted to analyse the influences of the parameters on the evaluation indexes; the optimization multicriteria mathematical model is simultaneously established to obtain the optimum parameters with the aid of Object Programming Approach along with Constrained Random Ray Method. Finally, an experiment is carried out to further test the acceptance of the calculated optimum values. It is shown that, for any yarn linear density within 6—13 Ne (98.4—45.4 tex), combing roller speed varying from 5000 to 9150 r/min affects content of extra-long fibre in fibre ring from rotor groove and yarn properties but does not significantly influence spinning stability; 7075 r/min, at which the SAQ-12 type of saw-toothed combing roller runs, is recommended to be the optimum combing roller speed for producing 6—13 Ne (98.4—45.4 tex) pure ramie noil yarns, where a compromise is achieved among the lowest content of extra-long fibre in fibre ring, the best spinning stability and the best yarn properties.展开更多
Some organoboron compounds as flame-retardants for fiber materials were prepared.Flame-retarding properties of these compounds determined by the Oxygen-Index Method weregood.These new compounds were characterized by I...Some organoboron compounds as flame-retardants for fiber materials were prepared.Flame-retarding properties of these compounds determined by the Oxygen-Index Method weregood.These new compounds were characterized by IR,~1H NMR spectrum and elementalanalysis.展开更多
There is a powerful market-need for superfast disperse dyes in special use, e.g. for automotivefabrics. The photochemical fading reactions of dyes are often very complicated, and no singlphotodegradation pathway can b...There is a powerful market-need for superfast disperse dyes in special use, e.g. for automotivefabrics. The photochemical fading reactions of dyes are often very complicated, and no singlphotodegradation pathway can be involved for all kinds of dyes. To enhance the photostability of the commonly used disperse dyes, a series of tests on the ef-fect of variable stabilizers on the photodegradation rate of nine representative disperse dyes werecarried out both in ethyl acetate solution and on cellulose acetate film. A moderate light sourceemitting above 300 nm was adopted in this study to simulate the photofading under practical appli-cations. The results show that, in solution, 2,2,6,6-tetramethyl-piperidine is the most effectivegeneral stabilizer for all the tested dyes, but on cellulose film, nickel diethyl-dithiocarbamateshows the greatest general protecting effect, and a synergistic effect is observed for special combina-tions of stabilizers.展开更多
This study examines the phenomena of the hormone-active fibers obtaining process, in the form of artificial insulin depot. As a fibrous carrier of insulin cation-exchange polyacrylonitrile (PAN) fibers and biodegradab...This study examines the phenomena of the hormone-active fibers obtaining process, in the form of artificial insulin depot. As a fibrous carrier of insulin cation-exchange polyacrylonitrile (PAN) fibers and biodegradable polysaccharide alginate fibers were used. The process of obtaining fibrous artificial insulin depot was based on the chemisorption of insulin from insulin aqueous solutions by these fibers. The parameters of insulin chemisorption reaction were determined and their influence on quantities of bonded insulin in the artificial depot was studied. The impact of fiber polymer nature on the intensity of insulin chemisorption was studied and determined. Also, the location and deposition of insulin in and onto the fiber, fiber topography were studied. The maximum amounts of bounded insulin for the cation-exchange PAN fibers were 395.0 mg porcine insulin chromatographic / g of fiber, and for the alginate fibers were about 300? mg of porcine insulin chromatographic / g of fiber.展开更多
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
文摘In this paper,the failure features of strip tensile specimen were observed and analysed for need-le-punched non-woven geotextiles.A mechanical model which expresses the relation between thetensile modulus,the strip specimen size,contraction factor and the tensile strength of non-wovenfabric was derived.The theoretical prediction showed that the main factor influencing tensilestrength of non-woven geotextile specimens with different size is the contraction factor of specimenor the specimen aspect ratio(width/length).The larger the aspect ratio,the higher the tensilestrength test value of geotextiles,but the experiments showed that the specimen tensile strength isnot increased with increasing the width of specimen.The reason was discussed and it seemed thatthe deviation could be served as an indication of the degree of imperfectness of the non-wovenstructure.
文摘The objective of this paper is to establish reliable prediction equations relating cotton fibreproperties measured by HVI system and yarn quality,A useful statistical method is adopted for de-veloping a multiple regression model interpreting the relation between the data of Spinlab HVIfibre properties and quality parameters of yarn STQ (Strength Tex Quotient).The percent relativecontribution of a fibre property with respect of STQ is also assessed.The results show that the totalcontribution of the HVI measured fibre properties can account for 77.4% of known variation ofyarn STQ.The main feature of the approach is its flexibility in accommodating all fibre properties.The examination of regression equation showed that it could be well applied to predict STQ ofyarns spun from the same spinning system,but,for different spinning systems and also for yarns ofdifferent linear density,modification of the equation would be needed.
文摘This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for analyzing the experimental results.It is shown that,with regard to the specifications of the sawtooth clothing of the combing rol-ler,large working angle,large tooth pitch,fine tooth shape,short tooth height,smooth finish andgood wearability are of benefit to improving the spinning stability and the spun yarn properties.The pinned combing roller,however,regardless of its complicated process of production,is sug-gested to be preferred for spinning the pure ramie noil rotor-spun yarns.The handling mode used in this work is efficient in improving the reliability and objectivity ofthe conclusions and can be used for solving the similar problems.
文摘This paper reports the optimum design of combing roller speed with reference to yielding 6-13 Ne(98.4—45.4 tex) pure ramie noil rotor-spun yarns. The universal rotatable composite design is adopted to get the highly precise regression equations, in which the variables are combing roller speed and yarn linear density considered to be the main technological parameters of combing roller and, the responses are the evaluation indexes concerning spinning stability, fiber length distribution of fibre ring from rotor groove and yarn properties. Based on these regression equations, the contours are plotted to analyse the influences of the parameters on the evaluation indexes; the optimization multicriteria mathematical model is simultaneously established to obtain the optimum parameters with the aid of Object Programming Approach along with Constrained Random Ray Method. Finally, an experiment is carried out to further test the acceptance of the calculated optimum values. It is shown that, for any yarn linear density within 6—13 Ne (98.4—45.4 tex), combing roller speed varying from 5000 to 9150 r/min affects content of extra-long fibre in fibre ring from rotor groove and yarn properties but does not significantly influence spinning stability; 7075 r/min, at which the SAQ-12 type of saw-toothed combing roller runs, is recommended to be the optimum combing roller speed for producing 6—13 Ne (98.4—45.4 tex) pure ramie noil yarns, where a compromise is achieved among the lowest content of extra-long fibre in fibre ring, the best spinning stability and the best yarn properties.
文摘Some organoboron compounds as flame-retardants for fiber materials were prepared.Flame-retarding properties of these compounds determined by the Oxygen-Index Method weregood.These new compounds were characterized by IR,~1H NMR spectrum and elementalanalysis.
文摘There is a powerful market-need for superfast disperse dyes in special use, e.g. for automotivefabrics. The photochemical fading reactions of dyes are often very complicated, and no singlphotodegradation pathway can be involved for all kinds of dyes. To enhance the photostability of the commonly used disperse dyes, a series of tests on the ef-fect of variable stabilizers on the photodegradation rate of nine representative disperse dyes werecarried out both in ethyl acetate solution and on cellulose acetate film. A moderate light sourceemitting above 300 nm was adopted in this study to simulate the photofading under practical appli-cations. The results show that, in solution, 2,2,6,6-tetramethyl-piperidine is the most effectivegeneral stabilizer for all the tested dyes, but on cellulose film, nickel diethyl-dithiocarbamateshows the greatest general protecting effect, and a synergistic effect is observed for special combina-tions of stabilizers.
文摘This study examines the phenomena of the hormone-active fibers obtaining process, in the form of artificial insulin depot. As a fibrous carrier of insulin cation-exchange polyacrylonitrile (PAN) fibers and biodegradable polysaccharide alginate fibers were used. The process of obtaining fibrous artificial insulin depot was based on the chemisorption of insulin from insulin aqueous solutions by these fibers. The parameters of insulin chemisorption reaction were determined and their influence on quantities of bonded insulin in the artificial depot was studied. The impact of fiber polymer nature on the intensity of insulin chemisorption was studied and determined. Also, the location and deposition of insulin in and onto the fiber, fiber topography were studied. The maximum amounts of bounded insulin for the cation-exchange PAN fibers were 395.0 mg porcine insulin chromatographic / g of fiber, and for the alginate fibers were about 300? mg of porcine insulin chromatographic / g of fiber.