期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel Parsimonious Neurofuzzy Model Applied to Railway Carriage System Identification and Fault Diagnosis 被引量:1
1
作者 S.C.Zhou O.L.Shuai +1 位作者 T.T.Wong T.P.Leung 《International Journal of Plant Engineering and Management》 1997年第4期7-11,共5页
In this paper, we suggest a novel parsimonious neurofuzzy model realized by RBFNs for railway carriage system identification and fault diagnosis. To overcome the curse of dimensionality resulting from high dimensional... In this paper, we suggest a novel parsimonious neurofuzzy model realized by RBFNs for railway carriage system identification and fault diagnosis. To overcome the curse of dimensionality resulting from high dimensional input variables, in our developed model the features extracted from the available observations are regarded as the input variables by adopting the higher-order statistics(HOS) technique. Such a constructed model is also applied to a practical railway carriage system, simulation results indicate that the developed neurofuzzy model possesses strong identification and fault diagnosis ability. 展开更多
关键词 parsimonious neurofuzzy model feature extraction by Higher-Order Statistics (HOS) railway carriage system identification and fault diagnosis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部