期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Changes in Soil Carbon Pools Induced by Substitution of Plantation for Native Forest 被引量:44
1
作者 XUQIUFANG XUJIANMING 《Pedosphere》 SCIE CAS CSCD 2003年第3期271-278,共8页
Changes in soil carbon pools under Chinese fir (Cunninghamia lanceolata) andbamboo (Phyllostachys pubescens) plantations substituted for a native forest (Quercus acutissima,Cyclobalanopsis glauca, Cas-tanopsis sclerop... Changes in soil carbon pools under Chinese fir (Cunninghamia lanceolata) andbamboo (Phyllostachys pubescens) plantations substituted for a native forest (Quercus acutissima,Cyclobalanopsis glauca, Cas-tanopsis sclerophylla, Platycarya strobilacea, Lithocarpus glaber) werestudied on the hills with acid parent rock and soils classified as red soils (Ferrisols) in Huzhou,Zhejiang Province of east China. It was found that total soil organic carbon (TSOC), easilyoxidisable carbon (EOC) and water-soluble organic carbon (WSOC) under bamboo plantation wereincreased, but microbial biomass carbon (MBC) was decreased. On the contrary, Chinese fir induceddeclines of all fractions of C including TSOC, EOC, WSOC and MBC. The percentages of the activefractions of soil C (EOC and WSOC) were increased in the plantations as compared to the nativebroad-leaved forest, but proportions of soil organic C as MBC were decreased. It could be concludedthat bamboo plantation had a great ability of not only fixing C but also accelerating soil C poolcycle, improving nutrient and microorganism activity; therefore, it is a good ecosystem and could berecommended for wide development. Chinese fir would shrink the soil C pool and deteriorate soilbiological fertility, so it did not benefit CO2 fixing and land sustainable utilization. 展开更多
关键词 BAMBOO broad-leaved forest chinese fir soil carbon
在线阅读 下载PDF
Nutrient Uptake and Use Efficiency of Irrigated Rice in Response to Potassium Application 被引量:18
2
作者 HUHong WANGGuang-Huo 《Pedosphere》 SCIE CAS CSCD 2004年第1期125-130,共6页
Potassium is one of the most important nutrients for rice production in many areas of Asia, especially in southeast China where potassium deficiency in soil is a widespread problem. Field experiments were conducted fo... Potassium is one of the most important nutrients for rice production in many areas of Asia, especially in southeast China where potassium deficiency in soil is a widespread problem. Field experiments were conducted for four consecutive years in Jinhua City, Zhejiang Province, to determine utilization of nutrients (N, P and K) by inbred and hybrid rice and rice grain yields as affected by application of potassium fertilizer under irrigated conditions. Grain yield and nutrient harvest index showed a significant response to the NPK treatment as compared to the NP treatment. This suggested that potassium improved transfer of nitrogen and phosphorus from stems and leaves to panicles in rice plants. N and P use efficiencies of rice were not strongly responsive to potassium, but K use efficiency decreased significantly despite the fact that the amount of total K uptake increased. A significant difference between varieties was also observed with respect to nutrient uptake and use efficiency. Hybrid rice exhibited physiological advantage in N and P uptake and use efficiency over inbred rice. Analysis of annual dynamic change of exchangeable K and non-exchangeable K in the test soil indicated that non-exchangeable K was an important K source for rice. Potassium application caused an annual decrease in the concentration of available K in the soil tested, whereas an increase was observed in non-exchangeable K. It could be concluded that K fertilizer application at the rate of 100 kg ha-1 per season was not high enough to match K output, and efficient K management for rice must be based on the K input/output balance. 展开更多
关键词 nutrient uptake nutrient use efficiency paddy soil POTASSIUM irrigatedrice
在线阅读 下载PDF
Changes of Labile Organic Carbon Fractions in Soils Under Different Rotation Systems 被引量:34
3
作者 NIJin-Zhi XUJian-Ming +1 位作者 XIEZheng-Miao WANGDe-Jian 《Pedosphere》 SCIE CAS CSCD 2004年第1期103-109,共7页
Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manureri... Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture. 展开更多
关键词 13C-NMR rotation system soil microbial biomass carbon soil water-soluble organic carbon
在线阅读 下载PDF
Effect of land use on microbial biomass-C, -N and -P in red soils 被引量:11
4
作者 陈国潮 何振立 《Journal of Zhejiang University Science》 EI CSCD 2003年第4期480-484,共5页
Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg... Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg C/kg, which is generally lower than that reported from other types of soil, probably because of low organic matter and high acidity in the red soils. Land use had considerable effects on the amounts of soil C mic . The C mic was the lowest in eroded fallow land, followed by woodland, tea garden, citrus grove and fallow grassland, and the highest in vegetable and paddy fields. There was significant correlation between C mic and organic matter content, suggesting that the influence of land use on C mic is mainly related to the input and accumulation of organic matter. Microbial biomass N in the soils ranged from 12.1 Nmg/kg to 31.7 Nmg/kg and was also affected by land use. The change of N mic with land use was similar to that of C mic . The microbial C/N ratio ranged from 5.2 to 9.9 and averaged 7.6. The N mic was significantly correlated with soil total N and available N. Microbial biomass P in the soils ranged from 4.5 mg P/kg to 52.3 mg P/kg. The microbial C/P ratio was in the range of 4-23. The P mic was relatively less affected by land use due to differences in fertilization practices for various land use systems. 展开更多
关键词 Land use Microbial biomass C N and P Red soils
在线阅读 下载PDF
Coupled Transfer of Water and Heat in Red Soil: Experiment and Numerical Modelling 被引量:4
5
作者 HANXIAOFEI LUJUN 《Pedosphere》 SCIE CAS CSCD 2001年第2期123-130,共8页
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experiment... Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable. 展开更多
关键词 coupled transfer of water and heat numerical modelling red soil
在线阅读 下载PDF
Pb uptake, accumulation, subcellular distribution in a Pb-accumulating ecotype of Sedum alfredii (Hance) 被引量:3
6
作者 何冰 杨肖娥 +2 位作者 倪吾钟 魏幼璋 叶海波 《Journal of Zhejiang University Science》 EI CSCD 2003年第4期474-479,共6页
Lead concentrations in roots, stems and leaves of accumulating and non accumulating ecotypes of Sedum alfredii (Hance) were studied through a hydroponic experiment with different Pb concentrations supplied as Pb(... Lead concentrations in roots, stems and leaves of accumulating and non accumulating ecotypes of Sedum alfredii (Hance) were studied through a hydroponic experiment with different Pb concentrations supplied as Pb(NO 3) 2. Lead concentrations in leaves and stems of the accumulating ecotype were 4-9 times and 3-5 times those of the non accumulating ecotype, and Pb accumulated amounts in stems and leaves of the accumulating ecotype were 4-9 times and 8-11 times higher than those of the non accumulating ecotype, respectively. The results indicated that the accumulating ecotype had better ability to transport Pb from roots to shoots. The subcellular distributions of Pb in the root, stem and leaf tissues were studied using sucrose differential centrifugation. Approximately 50% of Pb contents was found to be associated with the cell wall fraction in stems of the accumulating ecotype and the percentage increased to 80% both in roots and leaves, no matter when plants were grown with different levels of Pb. The results indicated that the distribution of Pb on cell walls of the accumulating ecotype could mainly account for the high tolerance to Pb. 展开更多
关键词 PB Accumulating ecotype Subcellular distribution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部