In this study, an advanced Lagrangian vortex- boundary element method is applied to simulate the unsteady impeller-diffuser interactions in a diffuser pump not only for design but also for off-design considerations. I...In this study, an advanced Lagrangian vortex- boundary element method is applied to simulate the unsteady impeller-diffuser interactions in a diffuser pump not only for design but also for off-design considerations. In velocity calculations based on the Biot-Savart law we do not have to grid large portions of the flow field and the calculation points are concentrated in the regions where vorticity is present. Lagrangian representation of the evolving vorticity field is well suited to moving boundaries. An integral pressure equation shows that the pressure distribution can be estimated directly from the instantaneous velocity and vorticity field. The numerical results are compared with the experimental data and the comparisons show that the method used in this study can provide us insight into the complicated unsteady impeller-diffuser interaction phenomena in a diffuser pump.展开更多
文摘In this study, an advanced Lagrangian vortex- boundary element method is applied to simulate the unsteady impeller-diffuser interactions in a diffuser pump not only for design but also for off-design considerations. In velocity calculations based on the Biot-Savart law we do not have to grid large portions of the flow field and the calculation points are concentrated in the regions where vorticity is present. Lagrangian representation of the evolving vorticity field is well suited to moving boundaries. An integral pressure equation shows that the pressure distribution can be estimated directly from the instantaneous velocity and vorticity field. The numerical results are compared with the experimental data and the comparisons show that the method used in this study can provide us insight into the complicated unsteady impeller-diffuser interaction phenomena in a diffuser pump.