The multi-billion dollar US tree nut industries rely heavily on methyl bromide fumigation for postharvest insect control and are facing a major challenge with the mandated cessation by 2005 of its use for most applica...The multi-billion dollar US tree nut industries rely heavily on methyl bromide fumigation for postharvest insect control and are facing a major challenge with the mandated cessation by 2005 of its use for most applications. There is an urgent need to develop effective and economically viable alternative treatments to replace current phytosanitary and quarantine practices in order to maintain the competitiveness of US agriculture in domestic and international markets. With the reliable heating block system, the thermal death kinetics for fifth-instar codling moth, Indianmeal moth, and navel orangeworm were determined at a heating rate of 18℃/min. A practical process protocol was developed to control the most heat resistant insect pest, fifth-instar navel orangeworm, in in-shell walnuts using a 27 MHz pilot scale radio frequency (RF) system. RF heating to 55℃ and holding in hot air for at least 5 min resulted in 100% mortality of the fifth-instar navel orangeworm. Rancidity, sensory qualities and shell characteristics were not affected by the treatments. If this method can be economically integrated into the handling process, it should have excellent potential as a disinfestation method for in-shell walnuts.展开更多
Single-walled carbon nanotubes (SWNTs) possess high conductivity, mechanical strength, transparency, and flexibility, and are thus suitable for use in flexible electronics, transparent electrodes, and energy-storage...Single-walled carbon nanotubes (SWNTs) possess high conductivity, mechanical strength, transparency, and flexibility, and are thus suitable for use in flexible electronics, transparent electrodes, and energy-storage and energy-harvesting applications. However, to exploit these properties, SWNTs must be de-bundled in a surfactant solution to permit processing and use. We report a new method to prepare a SWNT-based transparent conducting film (TCF) using the diazo dye 3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(4-amino naphthalene-1-sulfonic acid), commonly known as Congo red (CR), as a dispersant. Uniform 20-nm-thick TCFs were prepared on rigid glass and flexible polyethylene terephthalate (PET) substrates. The CR-SWNT dispersion and the CR-SWNT TCFs were characterized via UV-Vis-NIR, Raman spectroscopy, FT-IR spectroscopy, transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS) measurements. The sheet resistivity of the CRSWNT TCF was -34 ±6.6 Ω/□ with a transmittance of 81% at 550 nm, comparable to that of indium tin oxide-based films. Unlike SWNT dispersions prepared in common surfactants, such as sodium dodecyl sulfate (SDS), sodium cholate (SC), and Triton X-100, the CR-SWNT dispersion was amenable to forming TCF by drop coating. The CR-SWNT TCF was also very stable, maintaining a very low sheet resistivity even after 1,000 consecutive bending cycles of 8 mm bending radius. Further, manganese dioxide (MnO2) was electrochemically deposited on the CR-SWNT-PET film (MnO2-CR-SWNT-PET). The as-prepared MnO2- CR-SWNT-PET electrode exhibited high specific capacitance and bendability, demonstrating promise as a candidate electrode material for flexible supercapacitors.展开更多
文摘The multi-billion dollar US tree nut industries rely heavily on methyl bromide fumigation for postharvest insect control and are facing a major challenge with the mandated cessation by 2005 of its use for most applications. There is an urgent need to develop effective and economically viable alternative treatments to replace current phytosanitary and quarantine practices in order to maintain the competitiveness of US agriculture in domestic and international markets. With the reliable heating block system, the thermal death kinetics for fifth-instar codling moth, Indianmeal moth, and navel orangeworm were determined at a heating rate of 18℃/min. A practical process protocol was developed to control the most heat resistant insect pest, fifth-instar navel orangeworm, in in-shell walnuts using a 27 MHz pilot scale radio frequency (RF) system. RF heating to 55℃ and holding in hot air for at least 5 min resulted in 100% mortality of the fifth-instar navel orangeworm. Rancidity, sensory qualities and shell characteristics were not affected by the treatments. If this method can be economically integrated into the handling process, it should have excellent potential as a disinfestation method for in-shell walnuts.
文摘Single-walled carbon nanotubes (SWNTs) possess high conductivity, mechanical strength, transparency, and flexibility, and are thus suitable for use in flexible electronics, transparent electrodes, and energy-storage and energy-harvesting applications. However, to exploit these properties, SWNTs must be de-bundled in a surfactant solution to permit processing and use. We report a new method to prepare a SWNT-based transparent conducting film (TCF) using the diazo dye 3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(4-amino naphthalene-1-sulfonic acid), commonly known as Congo red (CR), as a dispersant. Uniform 20-nm-thick TCFs were prepared on rigid glass and flexible polyethylene terephthalate (PET) substrates. The CR-SWNT dispersion and the CR-SWNT TCFs were characterized via UV-Vis-NIR, Raman spectroscopy, FT-IR spectroscopy, transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS) measurements. The sheet resistivity of the CRSWNT TCF was -34 ±6.6 Ω/□ with a transmittance of 81% at 550 nm, comparable to that of indium tin oxide-based films. Unlike SWNT dispersions prepared in common surfactants, such as sodium dodecyl sulfate (SDS), sodium cholate (SC), and Triton X-100, the CR-SWNT dispersion was amenable to forming TCF by drop coating. The CR-SWNT TCF was also very stable, maintaining a very low sheet resistivity even after 1,000 consecutive bending cycles of 8 mm bending radius. Further, manganese dioxide (MnO2) was electrochemically deposited on the CR-SWNT-PET film (MnO2-CR-SWNT-PET). The as-prepared MnO2- CR-SWNT-PET electrode exhibited high specific capacitance and bendability, demonstrating promise as a candidate electrode material for flexible supercapacitors.