Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turb...Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.展开更多
The dimension number of the centralized Kalman filter (CKF) for the rapid transfer alignment (TA) is as high as 21 if the aircraft wing flexure motion is considered in the rapid TA. The 21-dimensional CKF brings the c...The dimension number of the centralized Kalman filter (CKF) for the rapid transfer alignment (TA) is as high as 21 if the aircraft wing flexure motion is considered in the rapid TA. The 21-dimensional CKF brings the calculation burden on the computer and the difficulty to meet a high filtering updating rate desired by rapid TA. The federated Kalman filter (FKF) for the rapid TA is proposed to solve the dilemma. The structure and the algorithm of the FKF, which can perform parallel computation and has less calculation burden, are designed.The wing flexure motion is modeled, and then the 12-order velocity matching local filter and the 15-order attitud ematching local filter are devised. Simulation results show that the proposed EKE for the rapid TA almost has the same performance as the CKF. Thus the calculation burden of the proposed FKF for the rapid TA is markedly decreased.展开更多
Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase erro...Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.展开更多
The linear combination of certain partition of unity, subordinate to certain open covering of a compact set, is proved to be capable of approximating to a continuous function at arbitrarily precision. By using proper ...The linear combination of certain partition of unity, subordinate to certain open covering of a compact set, is proved to be capable of approximating to a continuous function at arbitrarily precision. By using proper open covering and partition of unity, the robust nonlinear controllers and adaptive laws are designed for a class of nonlinear systems with uncertainties. The states and parameters of the closed-loop systems can be stabilized in the meaning of UUB ( uniformly ultimately bounded) via the robust nonlinear controllers and adaptive laws. Finally, an example shows the validity of method in this paper.展开更多
To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
Robust stability for a series of nonlinear systems is presented in this paper. Through different region descriptions, the problem of stability for a complex nonlinear system is transformed into ones of the robust stab...Robust stability for a series of nonlinear systems is presented in this paper. Through different region descriptions, the problem of stability for a complex nonlinear system is transformed into ones of the robust stabilities of several linear time-invariant systems. To get useful robust stability conditions, an expression for interval system is given, and the relationship between the internal stability and low- or supper-bound stability of interval systems is discussed. Thus, the polynomial matrix inequality for the determination of system robust stability is developed. Based on the equivalency transformation of the inequality, the solvable condition of the inequality is obtained. By means of the condition, robust stability theorem for interval systems is presented and a new design method of feedback control for nonlinear system is achieved. Applications to flight controller design show that the new method is efficient for uncertain system design.展开更多
Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors...Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.展开更多
Within the affine connection framework of Lagrangian control systems, basedon the results of Sussmann on small-time locally controllability of single-input affine nonlinearcontrol systems, the controllability results ...Within the affine connection framework of Lagrangian control systems, basedon the results of Sussmann on small-time locally controllability of single-input affine nonlinearcontrol systems, the controllability results for mechanical control systems with single-input areextended to the case of the systems with isotropic damping, where the Lagrangian is the kineticenergy associated with a Riemannian metric. A sufficient condition of negative small-time locallycontrollability for the system is obtained. Then,it is demonstrated that such systems are small-timelocally configuration controllable if and only if the dimension of the configuration manifold isone. Finally, two examples are given to illustrate the results. Lie bracketting of vector fields andthe symmetric product show the advantages in the discussion.展开更多
In this paper the development of reactive software is transformed into a control problem, and the supervisory control theory for discrete event dynamic systems is suggested to solve this control problem. The operating...In this paper the development of reactive software is transformed into a control problem, and the supervisory control theory for discrete event dynamic systems is suggested to solve this control problem. The operating environment under consideration is viewed as a controlled plant, the software under development as the corresponding controller, and the software requirements as the corresponding control objective. This idea leads to a constructive approach of software design, which ensures properties required a priori of the software under development. In this way the validation of the software under development is reduced to the validation of properties independent of implementation process. We reveal the inconsistence in using the concept of reachability to specify software requirements and clarify six different definitions of reachability. Two different definitions of invariance for specifying software requirements are also clarified. We then show how to synthesize the required controller or obtain software design solutions if the underlying software requirements are specified by several new combinations of reachability and invariance. The topic of this paper falls into the scope of software cybernetics that explores the interplay between software and control.展开更多
In this paper the four-dimensional dynamic diffusing mechanism and the enhancement in Long-Term Potentiation (LTP) of intrinsic nitric oxide (NO) in nervous system are studied computationally. A novel unsupervised Dif...In this paper the four-dimensional dynamic diffusing mechanism and the enhancement in Long-Term Potentiation (LTP) of intrinsic nitric oxide (NO) in nervous system are studied computationally. A novel unsupervised Diffusing Self-Organizing Maps (DSOM) model is presented on the union of SOM with NO diffusing mechanism. Based on the spatial prototype mapping, temporal enhancement is introduced in DSOM and the fine-tuning manner is improved by the simplified NO diffusing mechanism. Furthermore, the quantization error of optimal weights is valuated and the detailed noise analysis of DSOM is presented. Finally some typical stimulation experiments are presented to illustrate how DSOM gracefully handles time warping and multiple patterns with overlapping reference vectors.展开更多
This paper discusses the optimal filtering of a class of dynamic multiscale systems (DMS), which are observed independently by several sensors distributed at different resolution spaces. The system is subject to known...This paper discusses the optimal filtering of a class of dynamic multiscale systems (DMS), which are observed independently by several sensors distributed at different resolution spaces. The system is subject to known dynamic system model. The resolution and sampling frequencies of the sensors are supposed to decrease by a factor of two. By using the Haar wavelet transform to link the state nodes at each of the scales within a time block, a discrete-time model of this class of multiscale systems is given, and the conditions for applying Kalman filtering are proven. Based on the linear time-invariant system, the controllability and observability of the system and the stability of the Kalman filtering is studied, and a theorem is given. It is proved that the Kalman filter is stable if only the system is controllable and observable at the finest scale. Finally, a constant-velocity process is used to obtain insight into the efficiencies offered by our model and algorithm.展开更多
Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to A...Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed. Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.展开更多
文摘Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances. Automatic control is crucial for the efficiency and reliability of wind turbines. On the basis of simplified and proper model of variable speed variable pitch wind turbines, the effective wind speed is estimated using extended Kaiman filter. Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other. At below-rated wind speed, the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture. At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power. The simulation shows the effectiveness of the intelligent control.
文摘The dimension number of the centralized Kalman filter (CKF) for the rapid transfer alignment (TA) is as high as 21 if the aircraft wing flexure motion is considered in the rapid TA. The 21-dimensional CKF brings the calculation burden on the computer and the difficulty to meet a high filtering updating rate desired by rapid TA. The federated Kalman filter (FKF) for the rapid TA is proposed to solve the dilemma. The structure and the algorithm of the FKF, which can perform parallel computation and has less calculation burden, are designed.The wing flexure motion is modeled, and then the 12-order velocity matching local filter and the 15-order attitud ematching local filter are devised. Simulation results show that the proposed EKE for the rapid TA almost has the same performance as the CKF. Thus the calculation burden of the proposed FKF for the rapid TA is markedly decreased.
基金This project is supported by Aeronautics Foundation of China (No.00- E51022).
文摘Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.
基金This work was supported by the Natural Science Foundation of Guangdong Province (032035) the Nature Science foundation of Inner Mongolia (200208020201).
文摘The linear combination of certain partition of unity, subordinate to certain open covering of a compact set, is proved to be capable of approximating to a continuous function at arbitrarily precision. By using proper open covering and partition of unity, the robust nonlinear controllers and adaptive laws are designed for a class of nonlinear systems with uncertainties. The states and parameters of the closed-loop systems can be stabilized in the meaning of UUB ( uniformly ultimately bounded) via the robust nonlinear controllers and adaptive laws. Finally, an example shows the validity of method in this paper.
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
文摘Robust stability for a series of nonlinear systems is presented in this paper. Through different region descriptions, the problem of stability for a complex nonlinear system is transformed into ones of the robust stabilities of several linear time-invariant systems. To get useful robust stability conditions, an expression for interval system is given, and the relationship between the internal stability and low- or supper-bound stability of interval systems is discussed. Thus, the polynomial matrix inequality for the determination of system robust stability is developed. Based on the equivalency transformation of the inequality, the solvable condition of the inequality is obtained. By means of the condition, robust stability theorem for interval systems is presented and a new design method of feedback control for nonlinear system is achieved. Applications to flight controller design show that the new method is efficient for uncertain system design.
文摘Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.
文摘Within the affine connection framework of Lagrangian control systems, basedon the results of Sussmann on small-time locally controllability of single-input affine nonlinearcontrol systems, the controllability results for mechanical control systems with single-input areextended to the case of the systems with isotropic damping, where the Lagrangian is the kineticenergy associated with a Riemannian metric. A sufficient condition of negative small-time locallycontrollability for the system is obtained. Then,it is demonstrated that such systems are small-timelocally configuration controllable if and only if the dimension of the configuration manifold isone. Finally, two examples are given to illustrate the results. Lie bracketting of vector fields andthe symmetric product show the advantages in the discussion.
文摘In this paper the development of reactive software is transformed into a control problem, and the supervisory control theory for discrete event dynamic systems is suggested to solve this control problem. The operating environment under consideration is viewed as a controlled plant, the software under development as the corresponding controller, and the software requirements as the corresponding control objective. This idea leads to a constructive approach of software design, which ensures properties required a priori of the software under development. In this way the validation of the software under development is reduced to the validation of properties independent of implementation process. We reveal the inconsistence in using the concept of reachability to specify software requirements and clarify six different definitions of reachability. Two different definitions of invariance for specifying software requirements are also clarified. We then show how to synthesize the required controller or obtain software design solutions if the underlying software requirements are specified by several new combinations of reachability and invariance. The topic of this paper falls into the scope of software cybernetics that explores the interplay between software and control.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60171003.30370416)the National Distinguished Young Scholars Fund of China(Grant No,60225015)+1 种基金the Ministry of Science and Technology of China(Grant No.2001CCA04100)the Ministry of Education of China(TRAPOYT Project).
文摘In this paper the four-dimensional dynamic diffusing mechanism and the enhancement in Long-Term Potentiation (LTP) of intrinsic nitric oxide (NO) in nervous system are studied computationally. A novel unsupervised Diffusing Self-Organizing Maps (DSOM) model is presented on the union of SOM with NO diffusing mechanism. Based on the spatial prototype mapping, temporal enhancement is introduced in DSOM and the fine-tuning manner is improved by the simplified NO diffusing mechanism. Furthermore, the quantization error of optimal weights is valuated and the detailed noise analysis of DSOM is presented. Finally some typical stimulation experiments are presented to illustrate how DSOM gracefully handles time warping and multiple patterns with overlapping reference vectors.
文摘This paper discusses the optimal filtering of a class of dynamic multiscale systems (DMS), which are observed independently by several sensors distributed at different resolution spaces. The system is subject to known dynamic system model. The resolution and sampling frequencies of the sensors are supposed to decrease by a factor of two. By using the Haar wavelet transform to link the state nodes at each of the scales within a time block, a discrete-time model of this class of multiscale systems is given, and the conditions for applying Kalman filtering are proven. Based on the linear time-invariant system, the controllability and observability of the system and the stability of the Kalman filtering is studied, and a theorem is given. It is proved that the Kalman filter is stable if only the system is controllable and observable at the finest scale. Finally, a constant-velocity process is used to obtain insight into the efficiencies offered by our model and algorithm.
基金National Natural Science Foundation of China(Grant 19904008)the Excellent Young Teachers Program of MOE,Chinathe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China.
文摘Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed. Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.