The aim of this paper is to derive the power law type nonlinear viscoelastic crack-tip fields.For the requirement of later derivation,the HRR singular fields and the high-order asymp- totic fields are first examined.T...The aim of this paper is to derive the power law type nonlinear viscoelastic crack-tip fields.For the requirement of later derivation,the HRR singular fields and the high-order asymp- totic fields are first examined.That they are essentially the isotropic,incompressible,power law type nonlinear elastic crack-tip fields is illustrated.After a concise review of the elasticity recov- ery correspondence principle for solving the nonlinear viscoelastic problems,the correspondence principle for solving the crack problems of power law type nonlinear viscoelastic materials under the first type boundary condition is proposed.The solution of the crack-tip stress,strain fields for the power law type nonlinear viscoelastic materials,especially for the modified polypropylene, is obtained.展开更多
Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed fr...Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.展开更多
基金Project supported by the Hunan Natural Science Foundation(Nos.01JJY3001 and 01JJY2001)Research Item of the Hunan Education Committee(No.01C083)and the Key Item of Hunan Science and Technology Department.
文摘The aim of this paper is to derive the power law type nonlinear viscoelastic crack-tip fields.For the requirement of later derivation,the HRR singular fields and the high-order asymp- totic fields are first examined.That they are essentially the isotropic,incompressible,power law type nonlinear elastic crack-tip fields is illustrated.After a concise review of the elasticity recov- ery correspondence principle for solving the nonlinear viscoelastic problems,the correspondence principle for solving the crack problems of power law type nonlinear viscoelastic materials under the first type boundary condition is proposed.The solution of the crack-tip stress,strain fields for the power law type nonlinear viscoelastic materials,especially for the modified polypropylene, is obtained.
文摘Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.