The evolutionary density and the scatter of densities of the short fatigue cracks on the surface of 1Cr18Ni9Ti pipe-weld metal were observed by local and overall viewpoints, respectively. The local viewpoint, which is...The evolutionary density and the scatter of densities of the short fatigue cracks on the surface of 1Cr18Ni9Ti pipe-weld metal were observed by local and overall viewpoints, respectively. The local viewpoint, which is in accordance with a so-called "effectively short fatigue crack criterion", paid attention to the dominant effective short fatigue crack (DESFC) initiation zone and the zones ahead of the DESFC tips. The overall viewpoint focused on the whole test piece of specimen. The results revealed that the density and scatter evolution exhibited a significant character of microstructural short crack and physical short crack stages. The evolutionary behavior by the local viewpoint was sensitive to the increase of DESFC size and tip location. The mechanism of the short crack growth associated with the general test observations that the DESFC acted gradually as a long crack and the scatter of DESFC growth rates tended gradually to that of a long crack was well revealed. Intrinsic causes of the random cyclic strain-life relations and stress-strain responses are appropriately given. In contrast, the evolutionary behavior by the overall viewpoint was non-sensitive and violated the general test observations. Therefore, the intrinsic localization and randomization of material evolutionary fatigue damage should be more appropriately revealed from the observations by the local viewpoint.展开更多
Bifurcations of an airfoil with nonlinear pitching stiffness in incompressible flow are investigated. The pitching spring is regarded as a spring with cubic stiffness. The motion equations of the airfoil are written a...Bifurcations of an airfoil with nonlinear pitching stiffness in incompressible flow are investigated. The pitching spring is regarded as a spring with cubic stiffness. The motion equations of the airfoil are written as the four dimensional one order differential equations. Taking air speed and the linear part of pitching stiffness as the parameters, the analytic solutions of the critical boundaries of pitchfork bifurcations and Hopf bifurcations are obtained in 2 dimensional parameter plane. The stabilities of the equilibrium points and the limit cycles in different regions of 2 dimensional parameter plane are analyzed. By means of harmonic balance method, the approximate critical boundaries of 2-multiple semi-stable limit cycle bifurcations are obtained, and the bifurcation points of supercritical or subcritical Hopf bifurcation are found. Some numerical simulation results are given.展开更多
Sedimentation of particles in inclined and vertical vessels is numerically simulated by the Eulerian two-fluid model. The numerical results show an interesting phenomenon with two circulation vortexes in a vertical ve...Sedimentation of particles in inclined and vertical vessels is numerically simulated by the Eulerian two-fluid model. The numerical results show an interesting phenomenon with two circulation vortexes in a vertical vessel but one in the inclined vessel. Sensitivity tests indicate that the boundary layer effect is the key to induce this phenomenon. A numerical method based on 2D unstructured meshes is presented to solve the hard-sphere discrete particle model. Several applications show the numerical method has a good performance to simulate dense particulate flows in irregular domains without regard to element types of the mesh.展开更多
文摘The evolutionary density and the scatter of densities of the short fatigue cracks on the surface of 1Cr18Ni9Ti pipe-weld metal were observed by local and overall viewpoints, respectively. The local viewpoint, which is in accordance with a so-called "effectively short fatigue crack criterion", paid attention to the dominant effective short fatigue crack (DESFC) initiation zone and the zones ahead of the DESFC tips. The overall viewpoint focused on the whole test piece of specimen. The results revealed that the density and scatter evolution exhibited a significant character of microstructural short crack and physical short crack stages. The evolutionary behavior by the local viewpoint was sensitive to the increase of DESFC size and tip location. The mechanism of the short crack growth associated with the general test observations that the DESFC acted gradually as a long crack and the scatter of DESFC growth rates tended gradually to that of a long crack was well revealed. Intrinsic causes of the random cyclic strain-life relations and stress-strain responses are appropriately given. In contrast, the evolutionary behavior by the overall viewpoint was non-sensitive and violated the general test observations. Therefore, the intrinsic localization and randomization of material evolutionary fatigue damage should be more appropriately revealed from the observations by the local viewpoint.
基金Project supported by the National Natural Science Foundation of China (No. 10272092) Science Foundation of Southwest Jiaotong University (No.2003B09).
文摘Bifurcations of an airfoil with nonlinear pitching stiffness in incompressible flow are investigated. The pitching spring is regarded as a spring with cubic stiffness. The motion equations of the airfoil are written as the four dimensional one order differential equations. Taking air speed and the linear part of pitching stiffness as the parameters, the analytic solutions of the critical boundaries of pitchfork bifurcations and Hopf bifurcations are obtained in 2 dimensional parameter plane. The stabilities of the equilibrium points and the limit cycles in different regions of 2 dimensional parameter plane are analyzed. By means of harmonic balance method, the approximate critical boundaries of 2-multiple semi-stable limit cycle bifurcations are obtained, and the bifurcation points of supercritical or subcritical Hopf bifurcation are found. Some numerical simulation results are given.
文摘Sedimentation of particles in inclined and vertical vessels is numerically simulated by the Eulerian two-fluid model. The numerical results show an interesting phenomenon with two circulation vortexes in a vertical vessel but one in the inclined vessel. Sensitivity tests indicate that the boundary layer effect is the key to induce this phenomenon. A numerical method based on 2D unstructured meshes is presented to solve the hard-sphere discrete particle model. Several applications show the numerical method has a good performance to simulate dense particulate flows in irregular domains without regard to element types of the mesh.