Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(ox...Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(oxygen-ionic or protonic,or n-type,or p-type electronic)or a combination thereof gener-ating distinct dual-conducting or even triple-conducting materials.These properties enable their use as diverse functional materials for solid oxide fuel cells,solid oxide electrolysis cells,permeable membranes,and gas sensors.The literature review shows that the field of solid oxide materials and related electro-chemical cells has a significant level of research engagement,with over 8,000 publications published since 2020.The manual analysis of such a large volume of material is challenging.However,by examining the review articles,it is possible to identify key patterns,recent achievements,prospects,and remaining obstacles.To perform such an analysis,the present article provides,for the first time,a comprehensive summary of previous review publications that have been published since 2020,with a special focus on solid oxide materials and electrochemical systems.Thus,this study provides an important reference for researchers specializing in the fields of solid state ionics,high-temperature electrochemistry,and energyconversiontechnologies.展开更多
Coral-like structures of the Y_(3-x)Pr_(x)Fe_(5-y)Yb_(y)O_(12),(0.00 ≤ x ≤ 0.04, 0.00 ≤ y ≤ 0.02) compound were synthesized using the sol-gel method. Structural investigation certified the YIG cubic crystal struct...Coral-like structures of the Y_(3-x)Pr_(x)Fe_(5-y)Yb_(y)O_(12),(0.00 ≤ x ≤ 0.04, 0.00 ≤ y ≤ 0.02) compound were synthesized using the sol-gel method. Structural investigation certified the YIG cubic crystal structure formation, without any secondary phase. It is shown that, the relatively large ionic radius of the dopant cations results in an expansion of the lattice parameter, variations in the Iona-O-Iondangle, Iona-O,Iond-O and Ionc-O bond distances and decrease in the average crystallite size. Fourier transform infrared(FTIR) and Raman measurements are essential to testify the single-phase formation of YIG crystal structure and are observed changes in the stretching and vibrational modes, respectively. The morphological study, energy dispersive spectroscopy(EDS) spectra and textural properties show corallike structures, peaks associated with Pr^(3+) and Yb^(3+) atoms and the effect of dopants on surface area,diameter, and pore volume, respectively. The optical analysis from diffuse reflectance spectra witnessed an increase in the optical gap band, a decrease in Urbach energy and blue shift in the charge transfer,correlated with the expansion of the unit cell due to the dopant's insertion in the YIG structure. A typical ferrimagnetic behavior is exhibited by the Y_(3-x)Pr_(x)Fe_(5-y)Yb_(y)O_(12)compound. The saturation magnetization(M_(s)), cubic anisotropy constant(K_(1)) and coercive field(H_(c)) increase with the Pr^(3+)cations content, as consequence of their magnetic nature and distribution around of Fe^(3+)ions due to the coexistence with the Yb^(3+). Finally, for the first time, antibacterial tests by mean of the direct contact method were performed for YIG co-doped with Pr^(3+)and Yb^(3+)and it is shown that, relatively high dosages of Pr^(3+) cations favored the activity against S. aureus, therefore, a new biological property for YIG doped with rare earths is presented.展开更多
This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause ...This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.展开更多
The unique properties of TiO_(2)-sulfur(TiO_(2)-S)modified graphene nanocomposite electrode(GPE/TiO_(2)-S)in the electrochemical sensing of formaldehyde compound has been evaluated.We prepared TiO_(2)-S by hydrotherma...The unique properties of TiO_(2)-sulfur(TiO_(2)-S)modified graphene nanocomposite electrode(GPE/TiO_(2)-S)in the electrochemical sensing of formaldehyde compound has been evaluated.We prepared TiO_(2)-S by hydrothermal method and modified the graphene nanocomposite electrode by applying electrochemical cyclic voltammetry(CV)approach.The TiO_(2)-S nanocomposite was characterized by X-ray diffraction(XRD),while the GPE/TiO_(2)-S was examined by scanning electron microscopy(FESEM)and X-Ray fluorosense(XRF)techniques.TiO_(2)-S has a grain size of 19.32 nm.The surface morphology of the GPE/TiO_(2)-S nanocomposite shows a good,intact,and tightly porous structure with TiO_(2)-S covers the graphene surface.The content of optimized GPE/TiO_(2)-S electrodes is 41.5%of graphene,37.8%of TiO_(2),and 12.4%of sulfur that was prepared by mixing 1 g of TiO_(2)-S with 0.5 g of graphene and 0.3 mL paraffin.The GPE/TiO_(2)-S electrode produces a high anodic current(I_(pa))of 800μA and a high cathodic current(I_(pc))of-600μA at a scan rate of 0.1 V·s^(-1)using an electrolyte0.01 mol·L^(-1)K_3[Fe(CN)_6]solution containing 150 mg·L^(-1)formaldehyde.The limit of detection can reach as low as 9.7 mg·L^(-1)with stability with Horwitz ratio value as low as 0.397.The composite electrode also exhibits excellent slectivity properties by showing clear formaldehyde sugnal in the presence of high concentration of interfering agent.GPE/TiO_(2)-S electrode should find potential application of formaldehyde detection in food industries.展开更多
In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite...In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 -√ 1- C^2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation, Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.展开更多
This paper reports that the ground-state energy of polaron was obtained with strong electron-LO-phonon coupling by using a variational method of the Pekar type in a parabolic quantum dot. Quantum transition is occurre...This paper reports that the ground-state energy of polaron was obtained with strong electron-LO-phonon coupling by using a variational method of the Pekar type in a parabolic quantum dot. Quantum transition is occurred in the quantum system due to the electron-phonon interaction and the influence of temperature. That is the polaron transit from the ground-state to the first-excited state after absorbing a LO-phonon and it causes the change of the polaron lifetime. Numerical calculations are performed and the results illustrate that the ground-state lifetime of the polaron will increase with increasing the ground-state energy of polaron and decrease with increasing the electron-LO-phonon coupling strength, the confinement length of the quantum dot and the temperature.展开更多
This paper calculates the time evolution of the quantum mechanical state of an electron by using variational method of Pekar type on the condition of electric-LO-phonon strong coupling in a parabolic quantum dot. It o...This paper calculates the time evolution of the quantum mechanical state of an electron by using variational method of Pekar type on the condition of electric-LO-phonon strong coupling in a parabolic quantum dot. It obtains the eigenenergies of the ground state and the first-excited state, the eigenfunctions of the ground state and the first- excited state This system in a quantum dot may be employed as a two-level quantum system qubit. The superposition state electron density oscillates in the quantum dot with a period when the electron is in the superposition state of the ground and the first-excited state. It studies the influence of the electric field on the eigenenergies of the ground state, the first-excited state and the period of oscillation at the different electron-LO-phonon coupling constant and the different confinement length.展开更多
In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study...In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.展开更多
<span style="font-family:Verdana;">This manuscript presents a simple method for excess minority carriers’ lifetime measurement</span><span style="font-family:""> </span&g...<span style="font-family:Verdana;">This manuscript presents a simple method for excess minority carriers’ lifetime measurement</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">within the base region of p-n junction polycrystalline solar </span><span style="font-family:Verdana;">cell</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">in transient mode.</span><span style="font-family:""> </span><span style="font-family:Verdana;">This work is an experimental transient</span><span style="font-family:Verdana;"> 3-Dimensionnal study.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The magnitude of the magnetic field B is varied from 0 mT to 0.045 mT. Indeed, the solar cell is illuminated by a stroboscopic flash with air mass 1.5</span><span style="font-family:""> </span><span style="font-family:Verdana;">and under magnetic field in transient state.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The experimental details are assumed in a figure. The procedure is outlined by the Open Circuit Voltage Decay analysis. Effective minority carrier life-time is calculated by fitting the linear zone of the transient voltage decay curve</span><span style="font-family:""> </span><span style="font-family:Verdana;">because linear decay is an ideal decay. The kaleidagraph software permits access to the slope of the curve which is inversely proportional to the</span><span style="font-family:""> </span><span style="font-family:Verdana;">lifetime. The external magnetic effects</span><span style="font-family:""> </span><span style="font-family:Verdana;">on minority carriers’ effective lifetime </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> then</span><span style="font-family:""> </span><span style="font-family:Verdana;">presented and analyzed.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The analysis show</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> that the charge carrier</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s effective lifetime decrease with the magnetic field increase.</span>展开更多
The phenomena of acoustic emission in doped lithium niobate crystals were observed in the process of light-induced quasi-breakdown. It is found that the ultrasonic waves introduce into the crystal have been modulated ...The phenomena of acoustic emission in doped lithium niobate crystals were observed in the process of light-induced quasi-breakdown. It is found that the ultrasonic waves introduce into the crystal have been modulated by the low frequency acoustic waves. Its frequency increases with the rise of the intensity of incident light and its jump period of breakdown is the same as that of the photovoltaic current Ic, the change of light-induced refractive index Δn and the diffracted light intensity L. This effect was explained with the interaction of the three waves and resonant state theory. The experimental results and the theoretical analysis are in conformity.展开更多
A ZnO nanowire (NW) field-effect transistor (FET) is fabricated and characterized, and its characterization of ultraviolet radiation is also investigated. On the one hand, when the radiation time is 5 min, the rad...A ZnO nanowire (NW) field-effect transistor (FET) is fabricated and characterized, and its characterization of ultraviolet radiation is also investigated. On the one hand, when the radiation time is 5 min, the radiation intensity increases to 5.1μW/cm^2, while the saturation drain current (Idss) of the nanowire FET decreases sharply from 560 to 320 nA. The field effect mobility(μ) of the ZnO nanowire FET drops from 50.17 to 23.82cm^2/(V·s) at VDS= 2.5V, and the channel resistivity of the FET increases by a factor of 2.0n the other hand, when the radiation intensity is 2.5μW/cm^2, the DC performance of the FET does not change significantly with irradiation time (its performances at irradiation times of 5 and 20 min are almost the same); in particular, the Idss of NW FET only reduces by about 50 nA. Research is underway to reveal the intrinsic properties of suspended ZnO nanowires and to explore their device展开更多
Effects of a continuous magnetic field in the direction of streaming on the incompressible Kelvin–Helmholtz instability (KHI) are investigated by solving the linear ideal magnetohydrodynamic equations. It is found ...Effects of a continuous magnetic field in the direction of streaming on the incompressible Kelvin–Helmholtz instability (KHI) are investigated by solving the linear ideal magnetohydrodynamic equations. It is found that the frequency of the KHI is not influenced by the magnetic field. The magnetic field strength effect decreases the linear growth of the KHI, while the magnetic field gradient scale length effect increases its linear growth. The KHI can even be completely suppressed when the magnetic field is strong enough. The linear growth rate approaches a maximum when the magnetic field gradient scale length is large enough.展开更多
The collision of C_(60) with a graphite(0001)surface has been investigated by molecular dynamics simulation with TLHL potential.At an impact energy of 90eV,the C_(60) buckyball first deformed to a disc-like structure ...The collision of C_(60) with a graphite(0001)surface has been investigated by molecular dynamics simulation with TLHL potential.At an impact energy of 90eV,the C_(60) buckyball first deformed to a disc-like structure and then transformed back to its original shape and recoiled slowly.No dissociation of the C_(60) was observed on the time scale of the simulation.Unlike a single-atom-surface collision,the C_(60)-surface interaction is a highly inelastic process.展开更多
It has already been found that the round shape of holes can be changed into hexagonal shape during plasma etching processes.This work aims to understand the mechanism behind such a shape change using particle simulati...It has already been found that the round shape of holes can be changed into hexagonal shape during plasma etching processes.This work aims to understand the mechanism behind such a shape change using particle simulation method.The distribution of electric field produced by electrons was calculated for different heights from the mask surface.It is found that the field strength reaches its maximum around a hole edge and becomes the weakest between two holes. The field strength is weakened as moving away from the surface.The spatial distribution of this electric field shows obvious hexagonal shape around a hole edge at some distances from the surface. This charging distribution then affects the trajectories of ions that fall on a mask surface so that the round hole edge is etched to become a hexagonal hole edge.The changing of this hole shape will again alter the spatial distribution of electric field to enhance the charging effect dynamically.展开更多
This paper presents an energy analysis of a counter-flow plate heat exchanger operating in stationary mode. The exchanger comprises a rectangular plate of which we vary the heat transfer surface (by fixing its width a...This paper presents an energy analysis of a counter-flow plate heat exchanger operating in stationary mode. The exchanger comprises a rectangular plate of which we vary the heat transfer surface (by fixing its width and varying its length) and analyze the evolution of some parameters as a function of this heat transfer surface. The parameters to be analyzed are the NTU (number of transfer units), the effectiveness, the temperatures of both primary and secondary fluids and the heat flux. The analysis carried out will help understand the behavior of the counter-flow plate heat exchanger operating in stationary mode. Then, the heat transfer surface of the exchanger is determined for the sizing of a counter-flow plate heat exchanger intended to produce hot air for drying. That plate heat exchanger uses water vapor heated by geothermal energy as a primary fluid and atmospheric air as a secondary fluid. The products to be dried are onions with a mass flow of water to be evacuated of 100 kg/h.展开更多
A powerful non-destructive testing (NDT) technique is adopted to study the quality of RHA brick-1 and RHA brick-2. In that case, rice husk ash has been utilized for the preparation of bricks in full replacement of cla...A powerful non-destructive testing (NDT) technique is adopted to study the quality of RHA brick-1 and RHA brick-2. In that case, rice husk ash has been utilized for the preparation of bricks in full replacement of clay. In these studies, homogeneity of elemental distribution, water absorption and size and shape of the pores have been observed. From the studies, it was observed that elemental distribution is very good at various level, large number of porosity is presented with little bit size, initial rate of absorption (IRA) due to first five minutes immersion of water is higher compared to other immersion time (>5 minute), incremental water intrusion area increases very slowly with the increasing immersion time and the water absorption for RHA brick-2 becomes saturated very early than that of the RHA brick-1.展开更多
In the present work, the glass formation of Zr59Nb5Cu18Ni8Al10 (numbers indicate at %) alloy with diameter of 2 mm was prepared through water-cooled copper mold casting and in a ribbon form by the single roller melt-s...In the present work, the glass formation of Zr59Nb5Cu18Ni8Al10 (numbers indicate at %) alloy with diameter of 2 mm was prepared through water-cooled copper mold casting and in a ribbon form by the single roller melt-spinning method. This study is primarily devoted to evaluating the results obtained with the two methods of the development. The thermal stability was evaluated by differential scanning calorimetry (DSC) at a heating rate of 10℃/mn. The characteristic data of the bulk metallic glass are presented, including glass transition temperature (Tg) and crystallization temperature (Tx). The microstructure and constituent phases of the alloy composite have been analyzed by using X-ray diffraction, and observed by Scanning Electron Microscopy (SEM). The mechanical properties of bulk Zr59Nb5Cu18Ni8Al10 were alloy measured by compression tests at room temperature.展开更多
The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly a...The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly ash (CFA). Multiple techniques, X-ray fluorescence (XRF), X-ray diffraction (XRD), the Fourier transform infrared (FTIR), compressive strengths, thermophysical properties, and setting time were used to assess the physicochemical characteristics of the lime-based materials. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of ashes, lime and binders. The results showed that the chemical composition of ashes is similar to that of cement. Besides glass, the main minerals identified in CFA and FSSA are quartz (SiO<sub>2</sub>) and anhydrite (CaSO<sub>4</sub>). Moreover, calcium aluminium oxide (Ca<sub>3</sub>Al<sub>2</sub>O<sub>6</sub>) was detected for CFA and phosphorus calcium silicate (Ca<sub>2</sub>SiO<sub>4</sub>-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) for FSSA and minor phases were detected for both. FTIR measurements were carried out to characterize the inorganics components of different samples. Compressive strengths of mortars with different formulations have shown that both have a long-term positive effect which might be related to a pozzolanic activity. For the CFA the L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others while for the FSSA the L<sub>4</sub> binder consisting of 80% fine ash and 20% lime has a higher compressive strength than the others. Both binders setting start times are greater than that of cement but shorter than that of lime. The study of the thermophysical properties of binders shows that they have a higher thermal resistance than cement mortar. Moreover, binders heat up less quickly because of their low effusivity compared to cement. Lime-based materials system could be a promising option to both relieve the waste disposal pressure and provide a potential sustainable construction material.展开更多
The present work is a study on the influence of temperature and the velocity of air on the drying kinetics of pineapple slices. The main objective is to define from this drying kinetics rules to help a designer choose...The present work is a study on the influence of temperature and the velocity of air on the drying kinetics of pineapple slices. The main objective is to define from this drying kinetics rules to help a designer choose an adequate principle or drying configuration and optimize the design of dryers adapted to the use of it. The experiments were made in an electric dryer using a parallel flow system. The air was used at three different temperatures (40, 50 and 60 ~C) and at four different velocities (0.27, 0.5, 1 and 1.8 m/s) during the experiment. The results show that an increase of 10 ℃ of the drying temperature reduced the drying time by 45% and increased the drying velocity by 30%. On the set of air velocities tested, it was noticed that the influence of air velocity on drying was more striking at the beginning than at the end of the drying process (variation of less than 20%). Whatever the variation of parameters during the drying process, the best performance was observed when the products water content during the drying process was between 50% and 80%.展开更多
文摘Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(oxygen-ionic or protonic,or n-type,or p-type electronic)or a combination thereof gener-ating distinct dual-conducting or even triple-conducting materials.These properties enable their use as diverse functional materials for solid oxide fuel cells,solid oxide electrolysis cells,permeable membranes,and gas sensors.The literature review shows that the field of solid oxide materials and related electro-chemical cells has a significant level of research engagement,with over 8,000 publications published since 2020.The manual analysis of such a large volume of material is challenging.However,by examining the review articles,it is possible to identify key patterns,recent achievements,prospects,and remaining obstacles.To perform such an analysis,the present article provides,for the first time,a comprehensive summary of previous review publications that have been published since 2020,with a special focus on solid oxide materials and electrochemical systems.Thus,this study provides an important reference for researchers specializing in the fields of solid state ionics,high-temperature electrochemistry,and energyconversiontechnologies.
基金The authors are grateful to the Brazilian Agencies:Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior(CAPES),Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq),(CNPq N 4/2021-Bolsa de Produtividade em Pesquisa-PQ 307659/2021-6),(Chamada CNPq/MCTI/FNDCT N°18/2021-Faixa A,407796/2021-5)Financiadora de Estudos e Projetos(FINEP)and Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco(FACEPE)(APQ-0635-3.03/21-Jovens Pesquisadores).
文摘Coral-like structures of the Y_(3-x)Pr_(x)Fe_(5-y)Yb_(y)O_(12),(0.00 ≤ x ≤ 0.04, 0.00 ≤ y ≤ 0.02) compound were synthesized using the sol-gel method. Structural investigation certified the YIG cubic crystal structure formation, without any secondary phase. It is shown that, the relatively large ionic radius of the dopant cations results in an expansion of the lattice parameter, variations in the Iona-O-Iondangle, Iona-O,Iond-O and Ionc-O bond distances and decrease in the average crystallite size. Fourier transform infrared(FTIR) and Raman measurements are essential to testify the single-phase formation of YIG crystal structure and are observed changes in the stretching and vibrational modes, respectively. The morphological study, energy dispersive spectroscopy(EDS) spectra and textural properties show corallike structures, peaks associated with Pr^(3+) and Yb^(3+) atoms and the effect of dopants on surface area,diameter, and pore volume, respectively. The optical analysis from diffuse reflectance spectra witnessed an increase in the optical gap band, a decrease in Urbach energy and blue shift in the charge transfer,correlated with the expansion of the unit cell due to the dopant's insertion in the YIG structure. A typical ferrimagnetic behavior is exhibited by the Y_(3-x)Pr_(x)Fe_(5-y)Yb_(y)O_(12)compound. The saturation magnetization(M_(s)), cubic anisotropy constant(K_(1)) and coercive field(H_(c)) increase with the Pr^(3+)cations content, as consequence of their magnetic nature and distribution around of Fe^(3+)ions due to the coexistence with the Yb^(3+). Finally, for the first time, antibacterial tests by mean of the direct contact method were performed for YIG co-doped with Pr^(3+)and Yb^(3+)and it is shown that, relatively high dosages of Pr^(3+) cations favored the activity against S. aureus, therefore, a new biological property for YIG doped with rare earths is presented.
文摘This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.
基金the financial support from the Ministry of Education,Culture,Research and Technology of the Republic of Indonesia under the Applied Research award(DIPA023.17.1.690523/2023)the World Class Professor award grant 2023。
文摘The unique properties of TiO_(2)-sulfur(TiO_(2)-S)modified graphene nanocomposite electrode(GPE/TiO_(2)-S)in the electrochemical sensing of formaldehyde compound has been evaluated.We prepared TiO_(2)-S by hydrothermal method and modified the graphene nanocomposite electrode by applying electrochemical cyclic voltammetry(CV)approach.The TiO_(2)-S nanocomposite was characterized by X-ray diffraction(XRD),while the GPE/TiO_(2)-S was examined by scanning electron microscopy(FESEM)and X-Ray fluorosense(XRF)techniques.TiO_(2)-S has a grain size of 19.32 nm.The surface morphology of the GPE/TiO_(2)-S nanocomposite shows a good,intact,and tightly porous structure with TiO_(2)-S covers the graphene surface.The content of optimized GPE/TiO_(2)-S electrodes is 41.5%of graphene,37.8%of TiO_(2),and 12.4%of sulfur that was prepared by mixing 1 g of TiO_(2)-S with 0.5 g of graphene and 0.3 mL paraffin.The GPE/TiO_(2)-S electrode produces a high anodic current(I_(pa))of 800μA and a high cathodic current(I_(pc))of-600μA at a scan rate of 0.1 V·s^(-1)using an electrolyte0.01 mol·L^(-1)K_3[Fe(CN)_6]solution containing 150 mg·L^(-1)formaldehyde.The limit of detection can reach as low as 9.7 mg·L^(-1)with stability with Horwitz ratio value as low as 0.397.The composite electrode also exhibits excellent slectivity properties by showing clear formaldehyde sugnal in the presence of high concentration of interfering agent.GPE/TiO_(2)-S electrode should find potential application of formaldehyde detection in food industries.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575017 and 60472017
文摘In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ira non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 -√ 1- C^2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation, Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10747002 and 10347004)
文摘This paper reports that the ground-state energy of polaron was obtained with strong electron-LO-phonon coupling by using a variational method of the Pekar type in a parabolic quantum dot. Quantum transition is occurred in the quantum system due to the electron-phonon interaction and the influence of temperature. That is the polaron transit from the ground-state to the first-excited state after absorbing a LO-phonon and it causes the change of the polaron lifetime. Numerical calculations are performed and the results illustrate that the ground-state lifetime of the polaron will increase with increasing the ground-state energy of polaron and decrease with increasing the electron-LO-phonon coupling strength, the confinement length of the quantum dot and the temperature.
基金supported by the National Natural Science Foundation of China (Grant No 10747002)
文摘This paper calculates the time evolution of the quantum mechanical state of an electron by using variational method of Pekar type on the condition of electric-LO-phonon strong coupling in a parabolic quantum dot. It obtains the eigenenergies of the ground state and the first-excited state, the eigenfunctions of the ground state and the first- excited state This system in a quantum dot may be employed as a two-level quantum system qubit. The superposition state electron density oscillates in the quantum dot with a period when the electron is in the superposition state of the ground and the first-excited state. It studies the influence of the electric field on the eigenenergies of the ground state, the first-excited state and the period of oscillation at the different electron-LO-phonon coupling constant and the different confinement length.
文摘In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.
文摘<span style="font-family:Verdana;">This manuscript presents a simple method for excess minority carriers’ lifetime measurement</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">within the base region of p-n junction polycrystalline solar </span><span style="font-family:Verdana;">cell</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">in transient mode.</span><span style="font-family:""> </span><span style="font-family:Verdana;">This work is an experimental transient</span><span style="font-family:Verdana;"> 3-Dimensionnal study.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The magnitude of the magnetic field B is varied from 0 mT to 0.045 mT. Indeed, the solar cell is illuminated by a stroboscopic flash with air mass 1.5</span><span style="font-family:""> </span><span style="font-family:Verdana;">and under magnetic field in transient state.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The experimental details are assumed in a figure. The procedure is outlined by the Open Circuit Voltage Decay analysis. Effective minority carrier life-time is calculated by fitting the linear zone of the transient voltage decay curve</span><span style="font-family:""> </span><span style="font-family:Verdana;">because linear decay is an ideal decay. The kaleidagraph software permits access to the slope of the curve which is inversely proportional to the</span><span style="font-family:""> </span><span style="font-family:Verdana;">lifetime. The external magnetic effects</span><span style="font-family:""> </span><span style="font-family:Verdana;">on minority carriers’ effective lifetime </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> then</span><span style="font-family:""> </span><span style="font-family:Verdana;">presented and analyzed.</span><span style="font-family:""> </span><span style="font-family:Verdana;">The analysis show</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> that the charge carrier</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s effective lifetime decrease with the magnetic field increase.</span>
基金Project supported by the National Natural Science Foundation of China (60025512)
文摘The phenomena of acoustic emission in doped lithium niobate crystals were observed in the process of light-induced quasi-breakdown. It is found that the ultrasonic waves introduce into the crystal have been modulated by the low frequency acoustic waves. Its frequency increases with the rise of the intensity of incident light and its jump period of breakdown is the same as that of the photovoltaic current Ic, the change of light-induced refractive index Δn and the diffracted light intensity L. This effect was explained with the interaction of the three waves and resonant state theory. The experimental results and the theoretical analysis are in conformity.
基金Project supported by the Dean Fund of Institute of Microelectronics, Chinese Academy of Sciences (Grant No 08SB034002)
文摘A ZnO nanowire (NW) field-effect transistor (FET) is fabricated and characterized, and its characterization of ultraviolet radiation is also investigated. On the one hand, when the radiation time is 5 min, the radiation intensity increases to 5.1μW/cm^2, while the saturation drain current (Idss) of the nanowire FET decreases sharply from 560 to 320 nA. The field effect mobility(μ) of the ZnO nanowire FET drops from 50.17 to 23.82cm^2/(V·s) at VDS= 2.5V, and the channel resistivity of the FET increases by a factor of 2.0n the other hand, when the radiation intensity is 2.5μW/cm^2, the DC performance of the FET does not change significantly with irradiation time (its performances at irradiation times of 5 and 20 min are almost the same); in particular, the Idss of NW FET only reduces by about 50 nA. Research is underway to reveal the intrinsic properties of suspended ZnO nanowires and to explore their device
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275031, 11075024, 11274026 and 11074300, and the National Basic Research Program of China under Grant Nos 2013CB834100 and 2013CBA01504.
文摘Effects of a continuous magnetic field in the direction of streaming on the incompressible Kelvin–Helmholtz instability (KHI) are investigated by solving the linear ideal magnetohydrodynamic equations. It is found that the frequency of the KHI is not influenced by the magnetic field. The magnetic field strength effect decreases the linear growth of the KHI, while the magnetic field gradient scale length effect increases its linear growth. The KHI can even be completely suppressed when the magnetic field is strong enough. The linear growth rate approaches a maximum when the magnetic field gradient scale length is large enough.
基金Supported by the National Natural Science Foundation of China.
文摘The collision of C_(60) with a graphite(0001)surface has been investigated by molecular dynamics simulation with TLHL potential.At an impact energy of 90eV,the C_(60) buckyball first deformed to a disc-like structure and then transformed back to its original shape and recoiled slowly.No dissociation of the C_(60) was observed on the time scale of the simulation.Unlike a single-atom-surface collision,the C_(60)-surface interaction is a highly inelastic process.
基金supported by National Natural Science Foundation of China(Nos.11074232 and 10874160)National Basic Research Program of China(Nos.2011CB932801 and 2012CB933702)+1 种基金Ministry of Education of China(No.20123402110034)"111" project
文摘It has already been found that the round shape of holes can be changed into hexagonal shape during plasma etching processes.This work aims to understand the mechanism behind such a shape change using particle simulation method.The distribution of electric field produced by electrons was calculated for different heights from the mask surface.It is found that the field strength reaches its maximum around a hole edge and becomes the weakest between two holes. The field strength is weakened as moving away from the surface.The spatial distribution of this electric field shows obvious hexagonal shape around a hole edge at some distances from the surface. This charging distribution then affects the trajectories of ions that fall on a mask surface so that the round hole edge is etched to become a hexagonal hole edge.The changing of this hole shape will again alter the spatial distribution of electric field to enhance the charging effect dynamically.
文摘This paper presents an energy analysis of a counter-flow plate heat exchanger operating in stationary mode. The exchanger comprises a rectangular plate of which we vary the heat transfer surface (by fixing its width and varying its length) and analyze the evolution of some parameters as a function of this heat transfer surface. The parameters to be analyzed are the NTU (number of transfer units), the effectiveness, the temperatures of both primary and secondary fluids and the heat flux. The analysis carried out will help understand the behavior of the counter-flow plate heat exchanger operating in stationary mode. Then, the heat transfer surface of the exchanger is determined for the sizing of a counter-flow plate heat exchanger intended to produce hot air for drying. That plate heat exchanger uses water vapor heated by geothermal energy as a primary fluid and atmospheric air as a secondary fluid. The products to be dried are onions with a mass flow of water to be evacuated of 100 kg/h.
文摘A powerful non-destructive testing (NDT) technique is adopted to study the quality of RHA brick-1 and RHA brick-2. In that case, rice husk ash has been utilized for the preparation of bricks in full replacement of clay. In these studies, homogeneity of elemental distribution, water absorption and size and shape of the pores have been observed. From the studies, it was observed that elemental distribution is very good at various level, large number of porosity is presented with little bit size, initial rate of absorption (IRA) due to first five minutes immersion of water is higher compared to other immersion time (>5 minute), incremental water intrusion area increases very slowly with the increasing immersion time and the water absorption for RHA brick-2 becomes saturated very early than that of the RHA brick-1.
文摘In the present work, the glass formation of Zr59Nb5Cu18Ni8Al10 (numbers indicate at %) alloy with diameter of 2 mm was prepared through water-cooled copper mold casting and in a ribbon form by the single roller melt-spinning method. This study is primarily devoted to evaluating the results obtained with the two methods of the development. The thermal stability was evaluated by differential scanning calorimetry (DSC) at a heating rate of 10℃/mn. The characteristic data of the bulk metallic glass are presented, including glass transition temperature (Tg) and crystallization temperature (Tx). The microstructure and constituent phases of the alloy composite have been analyzed by using X-ray diffraction, and observed by Scanning Electron Microscopy (SEM). The mechanical properties of bulk Zr59Nb5Cu18Ni8Al10 were alloy measured by compression tests at room temperature.
文摘The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly ash (CFA). Multiple techniques, X-ray fluorescence (XRF), X-ray diffraction (XRD), the Fourier transform infrared (FTIR), compressive strengths, thermophysical properties, and setting time were used to assess the physicochemical characteristics of the lime-based materials. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of ashes, lime and binders. The results showed that the chemical composition of ashes is similar to that of cement. Besides glass, the main minerals identified in CFA and FSSA are quartz (SiO<sub>2</sub>) and anhydrite (CaSO<sub>4</sub>). Moreover, calcium aluminium oxide (Ca<sub>3</sub>Al<sub>2</sub>O<sub>6</sub>) was detected for CFA and phosphorus calcium silicate (Ca<sub>2</sub>SiO<sub>4</sub>-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) for FSSA and minor phases were detected for both. FTIR measurements were carried out to characterize the inorganics components of different samples. Compressive strengths of mortars with different formulations have shown that both have a long-term positive effect which might be related to a pozzolanic activity. For the CFA the L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others while for the FSSA the L<sub>4</sub> binder consisting of 80% fine ash and 20% lime has a higher compressive strength than the others. Both binders setting start times are greater than that of cement but shorter than that of lime. The study of the thermophysical properties of binders shows that they have a higher thermal resistance than cement mortar. Moreover, binders heat up less quickly because of their low effusivity compared to cement. Lime-based materials system could be a promising option to both relieve the waste disposal pressure and provide a potential sustainable construction material.
文摘The present work is a study on the influence of temperature and the velocity of air on the drying kinetics of pineapple slices. The main objective is to define from this drying kinetics rules to help a designer choose an adequate principle or drying configuration and optimize the design of dryers adapted to the use of it. The experiments were made in an electric dryer using a parallel flow system. The air was used at three different temperatures (40, 50 and 60 ~C) and at four different velocities (0.27, 0.5, 1 and 1.8 m/s) during the experiment. The results show that an increase of 10 ℃ of the drying temperature reduced the drying time by 45% and increased the drying velocity by 30%. On the set of air velocities tested, it was noticed that the influence of air velocity on drying was more striking at the beginning than at the end of the drying process (variation of less than 20%). Whatever the variation of parameters during the drying process, the best performance was observed when the products water content during the drying process was between 50% and 80%.