The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic pro...The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined.展开更多
Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and st...Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and stability of the vehicle,it is crucial to control it and coordinate the driving force.With this aim,this paper presents a driving force coordination control strategy with road identification for eight-wheeled electric vehicles equipped with an in-wheel motor for each wheel.In the proposed control strategy,the road identification module estimates tire-road forces using an unscented Kalman filter al-gorithm and recognizes the road adhesion coefficient by employing the recursive least-square method According to road identification,the optimal sip ratio under the current driving condition is obtainedand a controller based on sliding mode control with a conditional integrator uses this value for accel-eration slip regulation.The anti-slip controller obtains the adjusting torque,which is integrated with the driver-command-based feedforward control torque to implement driving force coordination control.The results of hardware-in-loop simulation show that this control strategy can accurately estimate tire-roadrces as well as the friction coefficient,and thus,can effectively fulfill the purpose of driving force coordinated control under different driving conditions.展开更多
It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire ...It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.展开更多
This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) tem...This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) temperature τ_B.ballistic density p_B) from the standardized met messages.The weighting factors are used for the calculation of ballistic elements μ_B that are incorporated into the trajectory calculations characteristics of weapon and ammunition.Two different methodologies practically used in the praxis are analysed and compared.For the comparison of the two methodologies the reference height of trajectory determined from the weighting factor functions is employed.On the basis of the analyses conducted,the potential for further increase in accuracy of these aiming angles preparation methods is pointed out.展开更多
Projectile trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs) which are a special k...Projectile trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs) which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements mB(ballistic wind wB, virtual temperature tB, pressure pB, density rB, speed of sound a) as well. An effect of weapon system parameters can be incorporated into calculations through the reference height of trajectory-RHT.RHT are also calculated from WFFs. Methods based on RHT are far more effective than traditional methods that use weighting factors q.We have found that the existing theory of RHT has several shortcomings due to we created an improved theory of generalized RHT which represent a special sensitivity parameters of dynamical systems. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.展开更多
One of the main challenges for multi-wheel hub motor driven vehicles is the coordination of individual drivetrains to improve mobility and stability in the steering process.This paper proposes a dual-steering mode bas...One of the main challenges for multi-wheel hub motor driven vehicles is the coordination of individual drivetrains to improve mobility and stability in the steering process.This paper proposes a dual-steering mode based on direct yaw moment control for enhancing vehicle steering ability in complex environ ments.The control system is designed as a hierarchical structure,with a yaw moment decision layer and a driving force distribution layer.In the higher-level layer,the objective optimization function is con-structed to obtain the slip steering ratio,which represents the degree of vehicle slip steering in the dual-steering mode.Ayaw moment controller using active disturbance rejection control theory is designed for continuous yaw rate control.When the actual yaw rate of the vehicle deviates from the reference yaw rate obtained by the vehicle reference model and the slip steering ratio,the yaw moment controller isactuated to determine the yaw moment demand for vehicle steering.In the lower-level layer,there is a torque distribution controller based on distribution rules,which meets the requirement of yaw moment demand without affecting the total longitudinal driving force of the vehicle.For verifying the validity and feasibility of the dual-steering mode,simulations were conducted on the hardware-in-loop real-time simulation platfomm.Additionally,corresponding real vehicle tests were carried out on an eight-wheel prototype vehicle.Test results were generally consistent with the simulation results,thereby demon-strating that the proposed dual-steering mode reduces steering radius and enhances the steering per-formance of the vehicle.展开更多
基金supported by the Research project VAROPS(Military autonomous and robotic assets)of the Ministry of Defence of The Czech Republicby the Specific Research Support Project(Grant No.SV22-201)financed from funds of the Ministry of Education,Youth and Sports of The Czech Republic。
文摘The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined.
基金This work was supported by the Weapons and Equipment Pre-Research Project of China(No.301051102).
文摘Because of the complexities of tire-road interaction,the wheels of a multi-wheel distributed electricdrive vehicle can easily slip under certain working conditions.As wheel slip affects the dynamic per-formance and stability of the vehicle,it is crucial to control it and coordinate the driving force.With this aim,this paper presents a driving force coordination control strategy with road identification for eight-wheeled electric vehicles equipped with an in-wheel motor for each wheel.In the proposed control strategy,the road identification module estimates tire-road forces using an unscented Kalman filter al-gorithm and recognizes the road adhesion coefficient by employing the recursive least-square method According to road identification,the optimal sip ratio under the current driving condition is obtainedand a controller based on sliding mode control with a conditional integrator uses this value for accel-eration slip regulation.The anti-slip controller obtains the adjusting torque,which is integrated with the driver-command-based feedforward control torque to implement driving force coordination control.The results of hardware-in-loop simulation show that this control strategy can accurately estimate tire-roadrces as well as the friction coefficient,and thus,can effectively fulfill the purpose of driving force coordinated control under different driving conditions.
基金support of financing from the Research Project for the Development of the Department of Weapons and Ammunition, Faculty of Military Technology, University of Defence, Brno, DZRO K–201
文摘It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.
基金support of financial means from the industrial research project of the Ministry of the Interior of the Czech Republic-project code VG20122015076:"Two survey points range-finding system utilization for perimeter security(screen)"the Research project for the development of the Department of Weapons and Ammunition,Faculty of Military Technology, University of Defence,Brno,PRO K-201
文摘This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) temperature τ_B.ballistic density p_B) from the standardized met messages.The weighting factors are used for the calculation of ballistic elements μ_B that are incorporated into the trajectory calculations characteristics of weapon and ammunition.Two different methodologies practically used in the praxis are analysed and compared.For the comparison of the two methodologies the reference height of trajectory determined from the weighting factor functions is employed.On the basis of the analyses conducted,the potential for further increase in accuracy of these aiming angles preparation methods is pointed out.
基金the Research Project for the Development of the Department of Weapons and Ammunition, Faculty of Military Technology, University of Defence, Brno, DZRO VYZBROJ
文摘Projectile trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs) which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements mB(ballistic wind wB, virtual temperature tB, pressure pB, density rB, speed of sound a) as well. An effect of weapon system parameters can be incorporated into calculations through the reference height of trajectory-RHT.RHT are also calculated from WFFs. Methods based on RHT are far more effective than traditional methods that use weighting factors q.We have found that the existing theory of RHT has several shortcomings due to we created an improved theory of generalized RHT which represent a special sensitivity parameters of dynamical systems. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.
基金This work was supported by the Weapons and Equipment Pre-Research Project of China(No.301051102).
文摘One of the main challenges for multi-wheel hub motor driven vehicles is the coordination of individual drivetrains to improve mobility and stability in the steering process.This paper proposes a dual-steering mode based on direct yaw moment control for enhancing vehicle steering ability in complex environ ments.The control system is designed as a hierarchical structure,with a yaw moment decision layer and a driving force distribution layer.In the higher-level layer,the objective optimization function is con-structed to obtain the slip steering ratio,which represents the degree of vehicle slip steering in the dual-steering mode.Ayaw moment controller using active disturbance rejection control theory is designed for continuous yaw rate control.When the actual yaw rate of the vehicle deviates from the reference yaw rate obtained by the vehicle reference model and the slip steering ratio,the yaw moment controller isactuated to determine the yaw moment demand for vehicle steering.In the lower-level layer,there is a torque distribution controller based on distribution rules,which meets the requirement of yaw moment demand without affecting the total longitudinal driving force of the vehicle.For verifying the validity and feasibility of the dual-steering mode,simulations were conducted on the hardware-in-loop real-time simulation platfomm.Additionally,corresponding real vehicle tests were carried out on an eight-wheel prototype vehicle.Test results were generally consistent with the simulation results,thereby demon-strating that the proposed dual-steering mode reduces steering radius and enhances the steering per-formance of the vehicle.