An important problem in studying the sloped rocket launch is to determine the oscillations and their effects on the initial conditions of the rocket path.This phenomenon influences the stability of the launching devic...An important problem in studying the sloped rocket launch is to determine the oscillations and their effects on the initial conditions of the rocket path.This phenomenon influences the stability of the launching device and the firing precision.It is assumed that the launching device and the moving rocket form a complex oscillating system that join together into a sum of rigid bodies bound by elastic elements(the vehicle chassis,the tilting platform and the rockets in the containers).The calculations of the launching device oscillations during the launch by numerical methods are presented.展开更多
The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and featu...The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.展开更多
Servicing is applied periodically in practice with the aim of restoring the system state and prolonging the lifetime. It is generally seen as an imperfect maintenance action which has a chief influence on the maintena...Servicing is applied periodically in practice with the aim of restoring the system state and prolonging the lifetime. It is generally seen as an imperfect maintenance action which has a chief influence on the maintenance strategy. In order to model the maintenance effect of servicing, this study analyzes the deterioration characteristics of system under scheduled servicing. And then the deterioration model is established from the failure mechanism by compound Poisson process. On the basis of the system damage value and failure mechanism, the failure rate refresh factor is proposed to describe the maintenance effect of servicing. A maintenance strategy is developed which combines the benefits of scheduled servicing and preventive maintenance. Then the optimization model is given to determine the optimal servicing period and preventive maintenance time, with an objective to minimize the system expected life-cycle cost per unit time and a constraint on system survival probability for the duration of mission time. Subject to mission time, it can control the ability of accomplishing the mission at any time so as to ensure the high dependability. An example of water pump rotor relating to scheduled servicing is introduced to illustrate the failure rate refresh factor and the proposed maintenance strategy. Compared with traditional methods, the numerical results show that the failure rate refresh factor can describe the maintenance effect of servicing more intuitively and objectively. It also demonstrates that this maintenance strategy can prolong the lifetime, reduce the total lifetime maintenance cost and guarantee the dependability of system.展开更多
Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condit...Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condition, a method based on small signal model and least mean square(LMS) algorithm is proposed. According to the method, the initial values of adaptive filter's weight vector are calculated with the solved model parameters through small signal model at first,then the small amount of direction cosine and its derivative are set as the input of the filter, and the small amount of the interference is set as the filter's expected vector. After that, the aircraft magnetic interference is compensated by LMS algorithm. Finally, the method is verified by simulation and experiment. The result shows that the compensation effect can be improved obviously by the LMS algorithm when original solved parameters have low precision. The method can further improve the compensation effect even if the solved parameters have high precision.展开更多
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al...A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.展开更多
The current research aims to simulate the flight trajectory of the North Korean submarine–launched ballistic missile(SLBM)and analyze its flight characteristics based on its range control method.Recently,North Korea ...The current research aims to simulate the flight trajectory of the North Korean submarine–launched ballistic missile(SLBM)and analyze its flight characteristics based on its range control method.Recently,North Korea has completed the test flight of SLBM and it has become a significant threat to international security.North Korea obtained SLBM technologies from Russia while disbanding decommissioned Russian submarines,and it is suspected that North Korea will continue to experiment in related fields along with its continued attempts to miniaturize nuclear weapons.If North Korea completes the development of SLBM and deploys the missiles,it means the completion of the three asymmetric warfare elements(nuclear weapon,ballistic missile,and submarine)and they will be the most significant threats to northeast Asia.Therefore,it is imperative to scientifically analyze SLBM to adeptly respond to such threat.One characteristic of SLBM is capability of attacking its target in a variety of ways based on its range control method.Based on this fact,the current research derives the flight equation of North Korean SLBM and simulates its flight trajectory based on various range control methods.The flight trajectories that we derive can be used to establish an effective anti-ballistic missile defense system in northeast Asia.展开更多
This paper presents the planar Fiber Bragg Grating (FBG) hydrophone probe sensing principle, and theoretically and experimentally researches the probe structure sensitivity, the receiving sensitivity frequency respo...This paper presents the planar Fiber Bragg Grating (FBG) hydrophone probe sensing principle, and theoretically and experimentally researches the probe structure sensitivity, the receiving sensitivity frequency response characteristic and the acceleration response property. Planar sheet is made of stainless steel, its thickness is 0.15 mm, its diameter is 15mm, and the length of hollow circular shell is 20 mm. For this size of the structure, the probe structure sensitivity is up to 23 fm/Pa, which is about 7300 times of the value of the bare fiber. The resonance frequency is 6.5 kHz, and the amplitude-frequency curve of the receiving sensitivity response is relatively flat within the frequency range of 100 Hz to 5.5 kHz. The output yielded by one unit acceleration (1m/s2) is equivalent to (2.52 to 3.26 Pa) acoustic pressure acting output. This probe structure is easy to form FBG hydrophone array by multiplexing technique. The research shows that this planar structure not only can form FBG hydrophone probe, but also can constitute optical FBG laser hydrophone probe. The structure can realize different bandwidth, different range acoustic pressure measurement by adjusting the geometrical size of the sheet.展开更多
文摘An important problem in studying the sloped rocket launch is to determine the oscillations and their effects on the initial conditions of the rocket path.This phenomenon influences the stability of the launching device and the firing precision.It is assumed that the launching device and the moving rocket form a complex oscillating system that join together into a sum of rigid bodies bound by elastic elements(the vehicle chassis,the tilting platform and the rockets in the containers).The calculations of the launching device oscillations during the launch by numerical methods are presented.
文摘The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.
基金supported by the National Defence Preresearch Foundation of China(Nos.51327020105,51304010206)
文摘Servicing is applied periodically in practice with the aim of restoring the system state and prolonging the lifetime. It is generally seen as an imperfect maintenance action which has a chief influence on the maintenance strategy. In order to model the maintenance effect of servicing, this study analyzes the deterioration characteristics of system under scheduled servicing. And then the deterioration model is established from the failure mechanism by compound Poisson process. On the basis of the system damage value and failure mechanism, the failure rate refresh factor is proposed to describe the maintenance effect of servicing. A maintenance strategy is developed which combines the benefits of scheduled servicing and preventive maintenance. Then the optimization model is given to determine the optimal servicing period and preventive maintenance time, with an objective to minimize the system expected life-cycle cost per unit time and a constraint on system survival probability for the duration of mission time. Subject to mission time, it can control the ability of accomplishing the mission at any time so as to ensure the high dependability. An example of water pump rotor relating to scheduled servicing is introduced to illustrate the failure rate refresh factor and the proposed maintenance strategy. Compared with traditional methods, the numerical results show that the failure rate refresh factor can describe the maintenance effect of servicing more intuitively and objectively. It also demonstrates that this maintenance strategy can prolong the lifetime, reduce the total lifetime maintenance cost and guarantee the dependability of system.
基金co-supported by the National Basic Research Program of China (No. 623125020103)
文摘Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condition, a method based on small signal model and least mean square(LMS) algorithm is proposed. According to the method, the initial values of adaptive filter's weight vector are calculated with the solved model parameters through small signal model at first,then the small amount of direction cosine and its derivative are set as the input of the filter, and the small amount of the interference is set as the filter's expected vector. After that, the aircraft magnetic interference is compensated by LMS algorithm. Finally, the method is verified by simulation and experiment. The result shows that the compensation effect can be improved obviously by the LMS algorithm when original solved parameters have low precision. The method can further improve the compensation effect even if the solved parameters have high precision.
文摘A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.
文摘The current research aims to simulate the flight trajectory of the North Korean submarine–launched ballistic missile(SLBM)and analyze its flight characteristics based on its range control method.Recently,North Korea has completed the test flight of SLBM and it has become a significant threat to international security.North Korea obtained SLBM technologies from Russia while disbanding decommissioned Russian submarines,and it is suspected that North Korea will continue to experiment in related fields along with its continued attempts to miniaturize nuclear weapons.If North Korea completes the development of SLBM and deploys the missiles,it means the completion of the three asymmetric warfare elements(nuclear weapon,ballistic missile,and submarine)and they will be the most significant threats to northeast Asia.Therefore,it is imperative to scientifically analyze SLBM to adeptly respond to such threat.One characteristic of SLBM is capability of attacking its target in a variety of ways based on its range control method.Based on this fact,the current research derives the flight equation of North Korean SLBM and simulates its flight trajectory based on various range control methods.The flight trajectories that we derive can be used to establish an effective anti-ballistic missile defense system in northeast Asia.
基金the Youth Dawn Plan of Science and Technology in Wuhan City of China (20065004116-20)
文摘This paper presents the planar Fiber Bragg Grating (FBG) hydrophone probe sensing principle, and theoretically and experimentally researches the probe structure sensitivity, the receiving sensitivity frequency response characteristic and the acceleration response property. Planar sheet is made of stainless steel, its thickness is 0.15 mm, its diameter is 15mm, and the length of hollow circular shell is 20 mm. For this size of the structure, the probe structure sensitivity is up to 23 fm/Pa, which is about 7300 times of the value of the bare fiber. The resonance frequency is 6.5 kHz, and the amplitude-frequency curve of the receiving sensitivity response is relatively flat within the frequency range of 100 Hz to 5.5 kHz. The output yielded by one unit acceleration (1m/s2) is equivalent to (2.52 to 3.26 Pa) acoustic pressure acting output. This probe structure is easy to form FBG hydrophone array by multiplexing technique. The research shows that this planar structure not only can form FBG hydrophone probe, but also can constitute optical FBG laser hydrophone probe. The structure can realize different bandwidth, different range acoustic pressure measurement by adjusting the geometrical size of the sheet.