Liquefaction testing at a saturated loess site was performed under the simulated earthquake ground motion induced by artificial explosions with micro-time intervals.The time histories of ground acceleration,pore water...Liquefaction testing at a saturated loess site was performed under the simulated earthquake ground motion induced by artificial explosions with micro-time intervals.The time histories of ground acceleration,pore water pressure and the ultimate value of residual strain were recorded and measured.The modified FEQdrain computation software was used to analyze the liquefaction.Both the test and the analysis confirm the objective occurrence of loess liquefaction.Furthermore,the reliability of the method of the loess liquefaction analysis based on FEQdrain and the model of pore water pressure development of saturated loess are examined.展开更多
Wicking geotextile(WG)is considered as a possible countermeasure to reduce water content in unsaturated soil.In this research,rainfall tests were carried out to verify the drainage performance of WG.And capillary rise...Wicking geotextile(WG)is considered as a possible countermeasure to reduce water content in unsaturated soil.In this research,rainfall tests were carried out to verify the drainage performance of WG.And capillary rise tests were conducted to study the effect of WG on the prevention of capillary rise.Test results indicated that WG with good drainage performance could drain gravitational and capillary water out of kaolinite soil.For kaolinite soil column with water content of 12%and compaction degree of 90%,the whole process of capillary rise in soil column with a layer of WG was a typical two-stage mode,and the maximum capillary height was about 380 mm,which provided that the WG could work as a barrier to prevent capillary rise effectively.In addition,the total vertical influential regions of WG in kaolinite soil above and below the WG layer were 400 and 100 mm,respectively.展开更多
This paper describes the improvement effect and mechanism of strengthening a liquefied sand foundation using the cross-vibration wing resonance method,through an indoor model test and numerical simulation.The results ...This paper describes the improvement effect and mechanism of strengthening a liquefied sand foundation using the cross-vibration wing resonance method,through an indoor model test and numerical simulation.The results obtained from the model test showed that a vertical drainage tube was formed during vibration compaction,and finally a crater with a depth of 40 mm and a radius of 150 mm was formed with sloping sides.The sand layer obtained a good improvement effect after resonance vibration,especially in the middle-lower sand deposit.The variation in excess pore water pressure showed different behavior in three stages of the vibration process,and the value after treatment was less than before with a decrease of 18.81%.The vibration energy in the horizontal direction gradually decreased to zero,however the absorption of vibration energy of the soil presented obvious nonuniformity along the depth direction.The results of the numerical simulation were similar to the model test results,including the scope and variation of pore water pressure,and the ground settlement after treatment.展开更多
基金China Ministry of Science and Technology (Granted No.2000-35)Registration No.for Publications of Lanzhou Institute of Seismology,CSB:LC2002-001.
文摘Liquefaction testing at a saturated loess site was performed under the simulated earthquake ground motion induced by artificial explosions with micro-time intervals.The time histories of ground acceleration,pore water pressure and the ultimate value of residual strain were recorded and measured.The modified FEQdrain computation software was used to analyze the liquefaction.Both the test and the analysis confirm the objective occurrence of loess liquefaction.Furthermore,the reliability of the method of the loess liquefaction analysis based on FEQdrain and the model of pore water pressure development of saturated loess are examined.
基金Projects(41872240,41672280)supported by the National Natural Science Foundation of ChinaProject(2016-1-16-2)supported by Science and Technology Project of Jilin Province Transportation,ChinaProject(SJCX18-0052)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘Wicking geotextile(WG)is considered as a possible countermeasure to reduce water content in unsaturated soil.In this research,rainfall tests were carried out to verify the drainage performance of WG.And capillary rise tests were conducted to study the effect of WG on the prevention of capillary rise.Test results indicated that WG with good drainage performance could drain gravitational and capillary water out of kaolinite soil.For kaolinite soil column with water content of 12%and compaction degree of 90%,the whole process of capillary rise in soil column with a layer of WG was a typical two-stage mode,and the maximum capillary height was about 380 mm,which provided that the WG could work as a barrier to prevent capillary rise effectively.In addition,the total vertical influential regions of WG in kaolinite soil above and below the WG layer were 400 and 100 mm,respectively.
基金National Natural Science Foundation of People′s Republic of China under Grant No.41977241the Scientific Research Foundation of Graduate School of Southeast University under Grant No.YBPY1981。
文摘This paper describes the improvement effect and mechanism of strengthening a liquefied sand foundation using the cross-vibration wing resonance method,through an indoor model test and numerical simulation.The results obtained from the model test showed that a vertical drainage tube was formed during vibration compaction,and finally a crater with a depth of 40 mm and a radius of 150 mm was formed with sloping sides.The sand layer obtained a good improvement effect after resonance vibration,especially in the middle-lower sand deposit.The variation in excess pore water pressure showed different behavior in three stages of the vibration process,and the value after treatment was less than before with a decrease of 18.81%.The vibration energy in the horizontal direction gradually decreased to zero,however the absorption of vibration energy of the soil presented obvious nonuniformity along the depth direction.The results of the numerical simulation were similar to the model test results,including the scope and variation of pore water pressure,and the ground settlement after treatment.