期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of dry-wet cycles on dynamic properties and microstructures of sandstone:Experiments and modelling 被引量:2
1
作者 Hai Pu Qingyu Yi +3 位作者 Andrey P.Jivkov Zhengfu Bian Weiqiang Chen Jiangyu Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期655-679,共25页
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi... Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields. 展开更多
关键词 Underground pumped storage power plant Dry-wet cycles Split Hopkinson pressure bar Macro and micro properties FEM-DEM coupling model Damage characterization
在线阅读 下载PDF
Gas migration at the granite-bentonite interface under semirigid boundary conditions in the context of high-level radioactive waste disposal
2
作者 Jiangfeng Liu Zhipeng Wang +3 位作者 Jingna Guo Andrey Jivkov Majid Sedighi Jianfu Shao 《Deep Underground Science and Engineering》 2025年第3期422-436,共15页
The corrosion of waste canisters in the deep geological disposal facilities(GDFs)for high-level radioactive waste(HLRW)can generate gas,which escapes from the engineered barrier system through the interfaces between t... The corrosion of waste canisters in the deep geological disposal facilities(GDFs)for high-level radioactive waste(HLRW)can generate gas,which escapes from the engineered barrier system through the interfaces between the bentonite buffer blocks and the host rock and those between the bentonite blocks.In this study,a series of water infiltration and gas breakthrough experiments were conducted on granite and on granite-bentonite specimens with smooth and grooved interfaces.On this basis,this study presents new insights and a quantitative assessment of the impact of the interface between clay and host rock on gas transport.As the results show,the water permeability values from water infiltration tests on granite and granite-bentonite samples(10−19-10−20m^(2))are found to be slightly higher than that of bentonite.The gas permeability of the mock-up samples with smooth interfaces is one order of magnitude larger than that of the mock-up with grooved interfaces.The gas results of breakthrough pressures for the granite and the granite-bentonite mock-up samples are significantly lower than that of bentonite.The results highlight the potential existence of preferential gas migration channels between the rock and bentonite buffer that require further considerations in safety assessment. 展开更多
关键词 gas migration GMZ granite–bentonite interface low-permeability porous medium semirigid boundary
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部