期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Deep Learning Approach for Prediction of Protein Secondary Structure
1
作者 Muhammad Zubair Muhammad Kashif Hanif +4 位作者 Eatedal Alabdulkreem Yazeed Ghadi Muhammad Irfan Khan Muhammad Umer Sarwar Ayesha Hanif 《Computers, Materials & Continua》 SCIE EI 2022年第8期3705-3718,共14页
The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure p... The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure prediction.Most of the existing computational techniques for protein structural and functional prediction are based onmachine learning with shallowframeworks.Different deep learning architectures have already been applied to tackle protein secondary structure prediction problem.In this study,deep learning based models,i.e.,convolutional neural network and long short-term memory for protein secondary structure prediction were proposed.The input to proposed models is amino acid sequences which were derived from CulledPDB dataset.Hyperparameter tuning with cross validation was employed to attain best parameters for the proposed models.The proposed models enables effective processing of amino acids and attain approximately 87.05%and 87.47%Q3 accuracy of protein secondary structure prediction for convolutional neural network and long short-term memory models,respectively. 展开更多
关键词 Convolutional neural network machine learning protein secondary structure deep learning long short-term memory protein secondary structure prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部