期刊文献+
共找到306篇文章
< 1 2 16 >
每页显示 20 50 100
A Survey of Link Failure Detection and Recovery in Software-Defined Networks
1
作者 Suheib Alhiyari Siti Hafizah AB Hamid Nur Nasuha Daud 《Computers, Materials & Continua》 SCIE EI 2025年第1期103-137,共35页
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance... Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods. 展开更多
关键词 Software defined networking failure detection failure recovery RESTORATION PROTECTION
在线阅读 下载PDF
Building Custom Spreadsheet Functions with Python: End-User Software Engineering Approach
2
作者 Tamer Bahgat Elserwy Atef Tayh Nour El-Din Raslan +1 位作者 Tarek Ali Mervat H. Gheith 《Journal of Software Engineering and Applications》 2024年第5期246-258,共13页
End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data a... End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment. 展开更多
关键词 End-User Software Engineering Custom Spreadsheet Functions (CSFs)
在线阅读 下载PDF
A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems
3
作者 Elif Varol Altay Osman Altay Yusuf Ovik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1039-1094,共56页
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ... Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions. 展开更多
关键词 Metaheuristic optimization algorithms real-world engineering design problems multidisciplinary design optimization problems
在线阅读 下载PDF
Enhancing Software Cost Estimation Using Feature Selection and Machine Learning Techniques
4
作者 Fizza Mansoor Muhammad Affan Alim +2 位作者 Muhammad Taha Jilani Muhammad Monsoor Alam Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第12期4603-4624,共22页
Software cost estimation is a crucial aspect of software project management,significantly impacting productivity and planning.This research investigates the impact of various feature selection techniques on software c... Software cost estimation is a crucial aspect of software project management,significantly impacting productivity and planning.This research investigates the impact of various feature selection techniques on software cost estimation accuracy using the CoCoMo NASA dataset,which comprises data from 93 unique software projects with 24 attributes.By applying multiple machine learning algorithms alongside three feature selection methods,this study aims to reduce data redundancy and enhance model accuracy.Our findings reveal that the principal component analysis(PCA)-based feature selection technique achieved the highest performance,underscoring the importance of optimal feature selection in improving software cost estimation accuracy.It is demonstrated that our proposed method outperforms the existing method while achieving the highest precision,accuracy,and recall rates. 展开更多
关键词 Machine learning software cost estimation PCA hyper parameter feature selection
在线阅读 下载PDF
Towards Improving the Quality of Requirement and Testing Process in Agile Software Development:An Empirical Study
5
作者 Irum Ilays Yaser Hafeez +4 位作者 Nabil Almashfi Sadia Ali Mamoona Humayun Muhammad Aqib Ghadah Alwakid 《Computers, Materials & Continua》 SCIE EI 2024年第9期3761-3784,共24页
Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As re... Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept. 展开更多
关键词 Requirement prediction software testing agile software development semantic analysis case-based reasoning
在线阅读 下载PDF
A Tutorial on Federated Learning from Theory to Practice:Foundations,Software Frameworks,Exemplary Use Cases,and Selected Trends
6
作者 M.Victoria Luzón Nuria Rodríguez-Barroso +5 位作者 Alberto Argente-Garrido Daniel Jiménez-López Jose M.Moyano Javier Del Ser Weiping Ding Francisco Herrera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期824-850,共27页
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ... When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications. 展开更多
关键词 Data privacy distributed machine learning federated learning software frameworks
在线阅读 下载PDF
Enhancing Secure Development in Globally Distributed Software Product Lines: A Machine Learning-Powered Framework for Cyber-Resilient Ecosystems
7
作者 Marya Iqbal Yaser Hafeez +5 位作者 Nabil Almashfi Amjad Alsirhani Faeiz Alserhani Sadia Ali Mamoona Humayun Muhammad Jamal 《Computers, Materials & Continua》 SCIE EI 2024年第6期5031-5049,共19页
Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to... Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to managing SPL variability,underscoring the critical importance of robust cybersecurity measures.This paper advocates for leveraging machine learning(ML)to address variability management issues and fortify the security of SPL.In the context of the broader special issue theme on innovative cybersecurity approaches,our proposed ML-based framework offers an interdisciplinary perspective,blending insights from computing,social sciences,and business.Specifically,it employs ML for demand analysis,dynamic feature extraction,and enhanced feature selection in distributed settings,contributing to cyber-resilient ecosystems.Our experiments demonstrate the framework’s superiority,emphasizing its potential to boost productivity and security in SPLs.As digital threats evolve,this research catalyzes interdisciplinary collaborations,aligning with the special issue’s goal of breaking down academic barriers to strengthen digital ecosystems against sophisticated attacks while upholding ethics,privacy,and human values. 展开更多
关键词 Machine Learning variability management CYBERSECURITY digital ecosystems cyber-resilience
在线阅读 下载PDF
Crowdsourced Requirements Engineering Challenges and Solutions:A Software Industry Perspective 被引量:2
8
作者 Huma Hayat Khan Muhammad Noman Malik +2 位作者 Youseef Alotaibi Abdulmajeed Alsufyani Saleh Alghamdi 《Computer Systems Science & Engineering》 SCIE EI 2021年第11期221-236,共16页
Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Beca... Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Because of its dynamic nature,SW CS has been progressively accepted and adopted in the software industry.However,issues pertinent to the understanding of requirements among crowds of people and requirements engineers are yet to be clarified and explained.If the requirements are not clear to the development team,it has a significant effect on the quality of the software product.This study aims to identify the potential challenges faced by requirements engineers when conducting the SW–CS based requirements engineering(RE)process.Moreover,solutions to overcome these challenges are also identified.Qualitative data analysis is performed on the interview data collected from software industry professionals.Consequently,20 SW–CS based RE challenges and their subsequent proposed solutions are devised,which are further grouped under seven categories.This study is beneficial for academicians,researchers and practitioners by providing detailed SW–CS based RE challenges and subsequent solutions that could eventually guide them to understand and effectively implement RE in SW CS. 展开更多
关键词 Software crowdsourced requirements engineering software industry software development SURVEY CHALLENGES
在线阅读 下载PDF
New Theoretical Aspects of Software Engineering for Development Applications and E-Learning 被引量:1
9
作者 Ekaterina Lavrischeva Alexei Ostrovski 《Journal of Software Engineering and Applications》 2013年第9期34-40,共7页
This paper presents new theoretical aspects of software engineering which oriented on product lines for building applied systems and software product families from readymade reusable components in conditions of progra... This paper presents new theoretical aspects of software engineering which oriented on product lines for building applied systems and software product families from readymade reusable components in conditions of program factories. These aspects are the new disciplines such as the theory of component programming;models variability and interoperability of system;theory for building systems and product families from components. Principles and methods of implementing these theories were realized in the instrumental and technological complex by lines of component development: assembling program factories using lines, e-learning to new theories and technologies in textbook of “Software Engineering” by the universities students. 展开更多
关键词 SOFTWARE Engineering Theory DISCIPLINES Technologies INTEROPERABILITY Applied Systems SOFTWARE Industry FABRICS E-LEARNING
在线阅读 下载PDF
Exploration on Blended Teaching Mode of “Introduction to Software Engineering” Based on SPOC
10
作者 Yulin He Yi Zhang +1 位作者 Ling Liu Zhengyi Yang 《计算机教育》 2022年第12期101-105,共5页
According to the abstract and practical characteristics of introduction to software engineering,the mixed flipped classroom teaching method is used in the teaching process.It can stimulate students’interest in learni... According to the abstract and practical characteristics of introduction to software engineering,the mixed flipped classroom teaching method is used in the teaching process.It can stimulate students’interest in learning.Taking the SPOC course“Introduction to software engineering”offered by Chongqing University as an example,this study uses the blended flipped classroom teaching method of“learning before teaching”.Online teaching resources design,teaching process design and assessment design were devised and practiced.Through the practice of blended flipped classroom teaching based on SPOC,the students’autonomous learning ability is improved.The effective combination of online teaching and offline classroom is realized.The teaching effect of this course has improved. 展开更多
关键词 Software engineering SPOC Blended learning Flipped classroom
在线阅读 下载PDF
Evaluating Domain Randomization Techniques in DRL Agents:A Comparative Study of Normal,Randomized,and Non-Randomized Resets
11
作者 Abubakar Elsafi 《Computer Modeling in Engineering & Sciences》 2025年第8期1749-1766,共18页
Domain randomization is a widely adopted technique in deep reinforcement learning(DRL)to improve agent generalization by exposing policies to diverse environmental conditions.This paper investigates the impact of diff... Domain randomization is a widely adopted technique in deep reinforcement learning(DRL)to improve agent generalization by exposing policies to diverse environmental conditions.This paper investigates the impact of different reset strategies,normal,non-randomized,and randomized,on agent performance using the Deep Deterministic Policy Gradient(DDPG)and Twin Delayed DDPG(TD3)algorithms within the CarRacing-v2 environment.Two experimental setups were conducted:an extended training regime with DDPG for 1000 steps per episode across 1000 episodes,and a fast execution setup comparing DDPG and TD3 for 30 episodes with 50 steps per episode under constrained computational resources.A step-based reward scaling mechanism was applied under the randomized reset condition to promote broader state exploration.Experimental results showthat randomized resets significantly enhance learning efficiency and generalization,with DDPG demonstrating superior performance across all reset strategies.In particular,DDPG combined with randomized resets achieves the highest smoothed rewards(reaching approximately 15),best stability,and fastest convergence.These differences are statistically significant,as confirmed by t-tests:DDPG outperforms TD3 under randomized(t=−101.91,p<0.0001),normal(t=−21.59,p<0.0001),and non-randomized(t=−62.46,p<0.0001)reset conditions.The findings underscore the critical role of reset strategy and reward shaping in enhancing the robustness and adaptability of DRL agents in continuous control tasks,particularly in environments where computational efficiency and training stability are crucial. 展开更多
关键词 DDPG agent TD3 agent deep reinforcement learning domain randomization generalization non-randomized reset normal reset randomized reset
在线阅读 下载PDF
Reducing the Gap between Software Engineering Curricula and Software Industry in Jordan
12
作者 Samer Hanna Hayat Jaber +1 位作者 Ayad Almasalmeh Fawze Abu Jaber 《Journal of Software Engineering and Applications》 2014年第7期602-616,共15页
Nowadays software is taking a very important role in almost all aspects of our daily lives which gave great importance to the study field of Software Engineering. However, most of the current Software Engineering grad... Nowadays software is taking a very important role in almost all aspects of our daily lives which gave great importance to the study field of Software Engineering. However, most of the current Software Engineering graduates in Jordan lack the required knowledge and skills to join software industry because of many reasons. This research investigates these reasons by firstly analyzing more than 1000 software job listings in Jordanian and Gulf area e-recruitment services in order to discover the skills and knowledge areas that are mostly required by software industry in Jordan and the Gulf area, and secondly comparing these knowledge areas and skills with those provided by the Software Engineering curricula at the Jordanian Universities. The awareness of the Software Engineering students and academic staff of the concluded mostly required knowledge areas and skills is measured using two questionnaires. Recommendations to decrease the gap between Software Engineering academia and industry had also been taken from a sample of software companies’ manager using a third questionnaire. The results of this research revealed that many important skills such as Web applications development are very poorly covered by Software engineering curricula and that many Software engineering students and academic staffs are not aware about many of the mostly needed skills to join industry. 展开更多
关键词 SOFTWARE Engineering SOFTWARE INDUSTRY KNOWLEDGE Areas KNOWLEDGE GAP Required Skills to JOIN INDUSTRY
暂未订购
Forensic Analysis of Cyberattacks in Electric Vehicle Charging Systems Using Host-Level Data
13
作者 Salam Al-E’mari Yousef Sanjalawe +4 位作者 Budoor Allehyani Ghader Kurdi Sharif Makhadmeh Ameera Jaradat Duaa Hijazi 《Computers, Materials & Continua》 2025年第11期3289-3320,共32页
Electric Vehicle Charging Systems(EVCS)are increasingly vulnerable to cybersecurity threats as they integrate deeply into smart grids and Internet ofThings(IoT)environments,raising significant security challenges.Most... Electric Vehicle Charging Systems(EVCS)are increasingly vulnerable to cybersecurity threats as they integrate deeply into smart grids and Internet ofThings(IoT)environments,raising significant security challenges.Most existing research primarily emphasizes network-level anomaly detection,leaving critical vulnerabilities at the host level underexplored.This study introduces a novel forensic analysis framework leveraging host-level data,including system logs,kernel events,and Hardware Performance Counters(HPC),to detect and analyze sophisticated cyberattacks such as cryptojacking,Denial-of-Service(DoS),and reconnaissance activities targeting EVCS.Using comprehensive forensic analysis and machine learning models,the proposed framework significantly outperforms existing methods,achieving an accuracy of 98.81%.The findings offer insights into distinct behavioral signatures associated with specific cyber threats,enabling improved cybersecurity strategies and actionable recommendations for robust EVCS infrastructure protection. 展开更多
关键词 Electric vehicle charging systems forensic analysis CYBERSECURITY host security cyber-physical systems
在线阅读 下载PDF
Mining Software Repository for Cleaning Bugs Using Data Mining Technique 被引量:1
14
作者 Nasir Mahmood Yaser Hafeez +4 位作者 Khalid Iqbal Shariq Hussain Muhammad Aqib Muhammad Jamal Oh-Young Song 《Computers, Materials & Continua》 SCIE EI 2021年第10期873-893,共21页
Despite advances in technological complexity and efforts,software repository maintenance requires reusing the data to reduce the effort and complexity.However,increasing ambiguity,irrelevance,and bugs while extracting... Despite advances in technological complexity and efforts,software repository maintenance requires reusing the data to reduce the effort and complexity.However,increasing ambiguity,irrelevance,and bugs while extracting similar data during software development generate a large amount of data from those data that reside in repositories.Thus,there is a need for a repository mining technique for relevant and bug-free data prediction.This paper proposes a fault prediction approach using a data-mining technique to find good predictors for high-quality software.To predict errors in mining data,the Apriori algorithm was used to discover association rules by fixing confidence at more than 40%and support at least 30%.The pruning strategy was adopted based on evaluation measures.Next,the rules were extracted from three projects of different domains;the extracted rules were then combined to obtain the most popular rules based on the evaluation measure values.To evaluate the proposed approach,we conducted an experimental study to compare the proposed rules with existing ones using four different industrial projects.The evaluation showed that the results of our proposal are promising.Practitioners and developers can utilize these rules for defect prediction during early software development. 展开更多
关键词 Fault prediction association rule data mining frequent pattern mining
在线阅读 下载PDF
Recommender System for Configuration Management Process of Entrepreneurial Software Designing Firms 被引量:1
15
作者 Muhammad Wajeeh Uz Zaman Yaser Hafeez +5 位作者 Shariq Hussain Haris Anwaar Shunkun Yang Sadia Ali Aaqif Afzaal Abbasi Oh-Young Song 《Computers, Materials & Continua》 SCIE EI 2021年第5期2373-2391,共19页
The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by softwar... The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by software product line(SPL)practices that employ feature models.However,optimal feature selection based on user requirements is a challenging task.Thus,there is a requirement to resolve the challenges of software development,to increase satisfaction and maintain high product quality,for massive customer needs within limited resources.In this work,we propose a recommender system for the development team and clients to increase productivity and quality by utilizing historical information and prior experiences of similar developers and clients.The proposed system recommends features with their estimated cost concerning new software requirements,from all over the globe according to similar developers’and clients’needs and preferences.The system guides and facilitates the development team by suggesting a list of features,code snippets,libraries,cheat sheets of programming languages,and coding references from a cloud-based knowledge management repository.Similarly,a list of features is suggested to the client according to their needs and preferences.The experimental results revealed that the proposed recommender system is feasible and effective,providing better recommendations to developers and clients.It provides proper and reasonably well-estimated costs to perform development tasks effectively as well as increase the client’s satisfaction level.The results indicate that there is an increase in productivity,performance,and quality of products and a reduction in effort,complexity,and system failure.Therefore,our proposed system facilitates developers and clients during development by providing better recommendations in terms of solutions and anticipated costs.Thus,the increase in productivity and satisfaction level maximizes the benefits and usability of SPL in the modern era of technology. 展开更多
关键词 Feature selection recommender system software reuse configuration management
在线阅读 下载PDF
Finding a Practical IT Solution-Open Source Accounting Software 被引量:1
16
作者 Manar Abu Talib Adel Khelifi +4 位作者 Osama El-Temtamy Fatima Ismaeel Mahra Rashed Najah Hasan Summaya Khaled 《通讯和计算机(中英文版)》 2012年第4期406-413,共8页
关键词 会计软件 开放源码 IT 小型企业 开源软件 阿联酋 研究论文 挑战性
在线阅读 下载PDF
Software Measurement Methods: An Analysis of Two Designs 被引量:1
17
作者 Jean-Marc Desharnais Alain Abran 《Journal of Software Engineering and Applications》 2012年第10期797-809,共13页
In software engineering, software measures are often proposed without precise identification of the measurable concepts they attempt to quantify: consequently, the numbers obtained are challenging to reproduce in diff... In software engineering, software measures are often proposed without precise identification of the measurable concepts they attempt to quantify: consequently, the numbers obtained are challenging to reproduce in different measurement contexts and to interpret, either as base measures or in combination as derived measures. The lack of consistency when using base measures in data collection can affect both data preparation and data analysis. This paper analyzes the similarities and differences across three different views of measurement methods (ISO International Vocabulary on Metrology, ISO 15939, and ISO 25021), and uses a process proposed for the design of software measurement methods to analyze two examples of such methods selected from the literature. 展开更多
关键词 SOFTWARE Measures BASE Measures DERIVED Measures Measurement Method Attributes SOFTWARE QUALITY Model METROLOGY SOFTWARE Metrics
在线阅读 下载PDF
Frilled Lizard Optimization: A Novel Bio-Inspired Optimizer for Solving Engineering Applications 被引量:3
18
作者 Ibraheem Abu Falahah Osama Al-Baik +6 位作者 Saleh Alomari Gulnara Bektemyssova Saikat Gochhait Irina Leonova OmParkash Malik Frank Werner Mohammad Dehghani 《Computers, Materials & Continua》 SCIE EI 2024年第6期3631-3678,共48页
This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspi... This research presents a novel nature-inspired metaheuristic algorithm called Frilled Lizard Optimization(FLO),which emulates the unique hunting behavior of frilled lizards in their natural habitat.FLO draws its inspiration from the sit-and-wait hunting strategy of these lizards.The algorithm’s core principles are meticulously detailed and mathematically structured into two distinct phases:(i)an exploration phase,which mimics the lizard’s sudden attack on its prey,and(ii)an exploitation phase,which simulates the lizard’s retreat to the treetops after feeding.To assess FLO’s efficacy in addressing optimization problems,its performance is rigorously tested on fifty-two standard benchmark functions.These functions include unimodal,high-dimensional multimodal,and fixed-dimensional multimodal functions,as well as the challenging CEC 2017 test suite.FLO’s performance is benchmarked against twelve established metaheuristic algorithms,providing a comprehensive comparative analysis.The simulation results demonstrate that FLO excels in both exploration and exploitation,effectively balancing these two critical aspects throughout the search process.This balanced approach enables FLO to outperform several competing algorithms in numerous test cases.Additionally,FLO is applied to twenty-two constrained optimization problems from the CEC 2011 test suite and four complex engineering design problems,further validating its robustness and versatility in solving real-world optimization challenges.Overall,the study highlights FLO’s superior performance and its potential as a powerful tool for tackling a wide range of optimization problems. 展开更多
关键词 OPTIMIZATION engineering BIO-INSPIRED METAHEURISTIC frilled lizard exploration EXPLOITATION
在线阅读 下载PDF
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem 被引量:1
19
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
在线阅读 下载PDF
Intelligent Framework for Secure Transportation Systems Using Software-Defined-Internet of Vehicles
20
作者 Mohana Priya Pitchai Manikandan Ramachandran +1 位作者 Fadi Al-Turjman Leonardo Mostarda 《Computers, Materials & Continua》 SCIE EI 2021年第9期3947-3966,共20页
The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles ar... The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles are connected to the internet through wireless communication technologies,the Internet of Vehicles network infrastructure is susceptible to flooding attacks.Reconfiguring the network infrastructure is difficult as network customization is not possible.As Software Defined Network provide a flexible programming environment for network customization,detecting flooding attacks on the Internet of Vehicles is integrated on top of it.The basic methodology used is crypto-fuzzy rules,in which cryptographic standard is incorporated in the traditional fuzzy rules.In this research work,an intelligent framework for secure transportation is proposed with the basic ideas of security attacks on the Internet of Vehicles integrated with software-defined networking.The intelligent framework is proposed to apply for the smart city application.The proposed cognitive framework is integrated with traditional fuzzy,cryptofuzzy and Restricted Boltzmann Machine algorithm to detect malicious traffic flows in Software-Defined-Internet of Vehicles.It is inferred from the result interpretations that an intelligent framework for secure transportation system achieves better attack detection accuracy with less delay and also prevents buffer overflow attacks.The proposed intelligent framework for secure transportation system is not compared with existing methods;instead,it is tested with crypto and machine learning algorithms. 展开更多
关键词 Internet of things smart cities software-defined network intelligent transportation system fuzzy inference system
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部