The turning performance of a ship is an important aspect of its maneuverability,and accurately predicting the hydrodynamic forces during ship turning motion is of great significance for the safe maneuvering design of ...The turning performance of a ship is an important aspect of its maneuverability,and accurately predicting the hydrodynamic forces during ship turning motion is of great significance for the safe maneuvering design of ships.This paper investigated the hydrodynamic performance of a KRISO container ship in steady turning using experimental and numerical approaches.The rotating arm tests were carried out in rotating arm basin of Zhejiang University,while the numerical simulations were conducted in commercial computational fluid dynamics software.Hydrodynamic forces and moments,hull surface wave height,wave patterns,and vorticity are studied under different velocities,radii,and drift angles.The results show that the increase in velocity has a significant impact on the forces and moments of the hull.The changes in longitudinal and transverse forces reflect the complex fluid dynamic interactions between the hull and water.Under conditions of small radius and large drift angle,the hull experiences greater forces and moments,indicating that stability and maneuverability will be more challenged during sudden turns.This study can provide experimental data and numerical simulation references for the research of ship turning maneuvers.展开更多
When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this...When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.展开更多
基金supported by the China Scholarship Council(Grant No.202306320084).
文摘The turning performance of a ship is an important aspect of its maneuverability,and accurately predicting the hydrodynamic forces during ship turning motion is of great significance for the safe maneuvering design of ships.This paper investigated the hydrodynamic performance of a KRISO container ship in steady turning using experimental and numerical approaches.The rotating arm tests were carried out in rotating arm basin of Zhejiang University,while the numerical simulations were conducted in commercial computational fluid dynamics software.Hydrodynamic forces and moments,hull surface wave height,wave patterns,and vorticity are studied under different velocities,radii,and drift angles.The results show that the increase in velocity has a significant impact on the forces and moments of the hull.The changes in longitudinal and transverse forces reflect the complex fluid dynamic interactions between the hull and water.Under conditions of small radius and large drift angle,the hull experiences greater forces and moments,indicating that stability and maneuverability will be more challenged during sudden turns.This study can provide experimental data and numerical simulation references for the research of ship turning maneuvers.
基金Supported by the MAROFF Competence Building ProjectFunded by the Research Council of Norway on "Holistic Risk-Based Design For Sustainable Arctic Sea Transport"
文摘When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.