期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thermal state calculation of chamber in small thrust liquid rocket engine for steady state pulsed mode 被引量:2
1
作者 Alexey Gennadievich VOROBYEV Svatlana Sergeevna VOROBYEVA +1 位作者 Lihui ZHANG Evgeniy Nikolaevich BELIAEV 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期253-262,共10页
This paper presents a method of thermal state calculation of combustion chamber in small thrust liquid rocket engine. The goal is to predict the thermal state of chamber wall by using basic parameters of engine: thrus... This paper presents a method of thermal state calculation of combustion chamber in small thrust liquid rocket engine. The goal is to predict the thermal state of chamber wall by using basic parameters of engine: thrust level, propellants, chamber pressure, injection pattern, film cooling parameters, material of wall and their coating, etc. The difficulties in modeling the startup and shutdown processes of thrusters lie in the fact that there are the conjugated physical processes occurring at various parameters for non-design conditions. A mathematical model to predict the thermal state of the combustion chamber for different engine operation modes is developed. To simulate the startup and shutdown processes, a quasi-steady approach is applied by replacing the transient process with time-variant operating parameters of steady-state processes. The mathematical model is based on several principles and data commonly used for heat transfer modeling: geometry of flow part, gas dynamics of flow, thermodynamics of propellants and combustion spices, convective and radiation heat flows, conjugated heat transfer between hot gas and wall, and transient approach for calculation of thermal state of construction. Calculations of the thermal state of the combustion chamber in single-turn-on mode show good convergence with the experimental results. The results of pulsed modes indicate a large temperature gradient on the internal wall surface of the chamber between pulses and the thermal state of the wall strongly depends on the pulse duration and the interval. 展开更多
关键词 Combustion CHAMBER Film cooling Mathematical model NONSTATIONARY THERMAL MODE SMALL THRUST liquid rocket engine Steady pulse MODE THERMAL state
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部