This article seeks to emphasize a simplified approach to phylogeny research using complete mitochondrial genomes alone, while touching upon a number of technological perspectives, such as algorithmic selection, which ...This article seeks to emphasize a simplified approach to phylogeny research using complete mitochondrial genomes alone, while touching upon a number of technological perspectives, such as algorithmic selection, which can help improve accuracy and performance in comparative analysis. My results will show that reliable estimations can be obtained by using mitochondrial markers, even among time-extended taxonomical rankings. Six distinct mammalian groups of taxa were selected for comparison. In all cases, mtDNA models generated reliable phylogeny approximations when compared against other independent data, while rendering exceptional computational performance.展开更多
Background: This study evaluated the bioequivalence of empagliflozin 12.5 mg/metformin 1000 mg tablets compared to Synjardy® (Empagliflozin 12.5 mg/metformin 1000 mg) tablets in healthy male subjects under fastin...Background: This study evaluated the bioequivalence of empagliflozin 12.5 mg/metformin 1000 mg tablets compared to Synjardy® (Empagliflozin 12.5 mg/metformin 1000 mg) tablets in healthy male subjects under fasting conditions. Methods: This was a phase I, randomized, single-dose, two-period, two-sequence, crossover study to evaluate the bioequivalence (BE) profiles of two fixed-dose combinations (FDCs) of empagliflozin/metformin. Cmax, AUC0-t and AUC0-∞ from test and reference formulations were evaluated to access BE. The plasma concentrations were measured using a validated liquid chromatography-mass spectrometry (LC-MS/MS) method. Of the 24 subjects enrolled, 23 completed both periods of the study. The two formulations test and reference were considered bioequivalent if 90% confidence interval (CI) fell within 80.00% - 125.00% for Cmax, AUC0-t and AUC0-∞. Tolerability and safety were assessed throughout the study. Results: The pharmacokinetic (PK) parameters were similar between the test product (T) and reference product (R) Synjardy®. The 90% CI of the test/reference ratios of log-transformed PK parameters point estimates was Cmax: 89.87% (85.68% - 94.27%), AUC0-t: 87.91% (83.65% - 92.39%) and AUC0-∞: 87.16% (82.80% - 91.75%) to empagliflozin and Cmax: 92.19% (87.95% - 96.65%), AUC0-t: 91.38% (84.42% - 98.91%) and AUC0-∞: 93.78% (83.82% - 104.93%) to metformin respectively (90% CI for all PK parameters fell within 80.00% - 125.00%). Conclusion: Our results demonstrated BE between the test and reference formulations of oral tablets of empagliflozin 12.5 mg/metformin 1000 mg (FDC) in healthy male subjects under fasting conditions.展开更多
In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis,...In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.展开更多
Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were f...Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.展开更多
Hydrogen energy as a sustainable energy source has most recently become an increasingly important renewable energy resource due to its ability to power fuel cells in zero-emission vehicles and its help in lowering the...Hydrogen energy as a sustainable energy source has most recently become an increasingly important renewable energy resource due to its ability to power fuel cells in zero-emission vehicles and its help in lowering the levels of CO2</sub> emissions. Also, hydrogen has a high energy density and can be utilized in a wide range of applications. It is indeed the fuel of the future but, it is still not entirely apparent how to analyze the most successful ways for hydrogen storage based on technological configuration, nature, and efficiency mechanisms. The historical hydrogen storage technologies as they are presented by the current research have been evaluated, analyzed, and examined in this study. The two categories of hydrogen storage systems are physical-based and material-based.The first category involves storing hydrogen as liquid, cold/cryo-compressed, and compressed gas. Chemical sorption/chemisorption and physical sorption/physisorption are the two primary sub-groups of material-based storage, respectively. The quantitative and qualitative analyses of storage technologies for hydrogen are evaluated in this paper. Also, this report reviews the major safety and reliability issues currently facing hydrogen storage systems. Suggestions are made to assist lay the groundwork for future risk and reliability analysis to ensure safe, dependable operation.展开更多
It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experimen...It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experiment, toluene diisocyanate, diphenyl methane diisocyanate and hexamethylenediisocyanate were used to form the polyurethane shell and the effects of them on the heat storage density and the microencapsulation efficiency were investigated. Furthermore, the effect of supercooling prevention agent on the phase change behavior of erythritol was investigated. The microcapsules prepared with toluendiisocyanate monomer showed the highest heat storage density and the higher microencapsulation efficiency. Considerable supercooling phenomenon in the microcapsule was observed and prevented to a certain degree by addition of potassium dihydrogen phosphate and calcium sulfate as the supercooling prevention agent.展开更多
Plastic wastes from milk containers, soft drink bottles, plastic wraps, plastic flatware, etc. have been successfully converted into fuel. Two approaches for the conversion of waste post consumer plastic into fuel hav...Plastic wastes from milk containers, soft drink bottles, plastic wraps, plastic flatware, etc. have been successfully converted into fuel. Two approaches for the conversion of waste post consumer plastic into fuel have been investigated: (1) muffle furnace to reactor liquefaction system; (2) direct liquefaction system. Majority of used plastics are derived from ethylene, propylene, butadiene and benzene. Waste plastics are plastics that are used by the people in their daily life. It is collected from outside and city municipalities. Some of them are coded and rests are non-coded. A developed process discussed in this paper works with most of the waste plastic, both coded and non-coded. The plastics are heated up at 120-380 ℃ temperature to melt. The gaseous vapor is then condensed into liquid fuel.展开更多
We screened 15 Agromyces strains from the Microbacteriaceae family and 16 Gordonia strains from the Gordoniaceae family to investigate their biocatalytic ability to reduce carbonyl compounds. Two Agromyces strains (A....We screened 15 Agromyces strains from the Microbacteriaceae family and 16 Gordonia strains from the Gordoniaceae family to investigate their biocatalytic ability to reduce carbonyl compounds. Two Agromyces strains (A. soli NBRC109063 and A. humatus NBRC109085) and two Gordonia strains (G. hydrophobica NBRC16057 and G. malaquae NBRC108250) grew well in 230 medium. The stereoselective reduction of various carbonyl compounds using these four strains was investigated. We discovered that these strains can reduce aliphatic and aromatic α-keto esters and an aromatic α-keto amide. On the basis of the conversion rate and stereoselectivity of the alcohols produced, G. hydrophobica NBRC16057 is a potential biocatalyst for the stereoselective reduction of α-keto esters and an aromatic α-keto amide to the corresponding chiral alcohols. Our results also suggest that the reduction of ethyl 2-methylacetoacetate by wet G. hydrophobica NBRC16057 cells in the presence of L-glutamate is useful for the production of chiral ethyl 3-hydroxy-2-methylbutanoate.展开更多
This paper tried to develop the optimum procedure for microencapsulating water soluble solid powder with the thermal responsible material by the melting dispersion cooling method. Sodium hydrogen carbonate was adopted...This paper tried to develop the optimum procedure for microencapsulating water soluble solid powder with the thermal responsible material by the melting dispersion cooling method. Sodium hydrogen carbonate was adopted as a water soluble solid powder instead of microencapsulating carbon dioxide gas. The shell material was composed of olefin wax and α-tocopherol. In the experiment, the concentration of oil soluble surfactant and the water soluble surfactant species were changed. Sodium hydrogen carbonate was treated in the aqueous solution dissolving the water soluble surfactant to form the finer sodium hydrogen carbonate powder and to increase the content. The microencapsulation efficiency could be increased with the concentration of oil soluble surfactant and considerably increased by treating sodium hydrogen carbonate with the water soluble surfactant. Sodium hydrogen carbonate was protected well from environmental water. The microcapsules showed the thermal responsibility to generate carbon dioxide.展开更多
It was tried to microencapsulate the ascorbic acid powder as a redox initiator with tripalmitin by use of the dry coating method. In the experiment, the feed ratio of the amount of tripalmitin to that of ascorbic acid...It was tried to microencapsulate the ascorbic acid powder as a redox initiator with tripalmitin by use of the dry coating method. In the experiment, the feed ratio of the amount of tripalmitin to that of ascorbic acid, the coating time and the concentration of ethyl alcohol of pulverizing solvent were changed stepwise. The characteristics of microcapsules such as the content of core material, the yield, the water proof degree, the microencapsulation efficiency and the mean diameter were estimated. The yield, the microencapsulation efficiency and the water proof degree gradually increased with the feed ratio, the coating time and the concentration of pulverizing solvent. The microcapsules showed the thermal responsibility and induced polymerization of methyl methacrylate monomer.展开更多
Pressure applied on the top roller of drafting zone is a vital factor on which the quality of ultimate yarn depends. Drafting zone is needed to reduce the mass per unit length of input material. Appropriate contact of...Pressure applied on the top roller of drafting zone is a vital factor on which the quality of ultimate yarn depends. Drafting zone is needed to reduce the mass per unit length of input material. Appropriate contact of top rollers with bottom rollers is necessary to ensure proper drafting. In this paper, the effects of different front top roller pressure of drafting zone on the quality of 20Ne cotton-flax blended yarns (C:L = 45:55) were studied. It was observed that a higher pressure value gives a lower co-efficient of mass variation, imperfections, hairiness and higher evenness, tenacity, elongation properties.展开更多
<strong>OBJECTIVE:</strong> <span style="font-family:;" "=""><span style="font-family:Verdana;">The physiological skin surface pH is crucial for several epide...<strong>OBJECTIVE:</strong> <span style="font-family:;" "=""><span style="font-family:Verdana;">The physiological skin surface pH is crucial for several epidermal barrier functions, like stratum corneum integrity, cohesion and restoration. Alterations of the “normal” acidic nature of the skin surface have been shown to correlate with specific skin conditions like aged or inflamed skin and are leading to impaired skin barrier function and formation. It is previously demonstrated that topical acidification in atopic dermatitis improves stratum corneum function, skin barrier structure and clinical signs in dermatitis. Against this background, we examined the impact of a slightly acidic skin care product containing urea on stratum corneum hydration, skin surface pH and epidermal barrier function in subjects with dry skin and atopic diathesis. </span><b><span style="font-family:Verdana;">METHODS:</span></b><span style="font-family:Verdana;"> Stratum corneum hydration, skin surface pH and transepidermal water loss were biophysically measured before and after a 4-week treatment period with the test product (pH 4.5, 10% urea) compared to the reference product in 25 volunteers. In addition, dynamic epidermal barrier parameters like stratum corneum integrity, cohesion and recovery were investigated by using a previously described tape stripping approach. </span><b><span style="font-family:Verdana;">RESULTS:</span></b><span style="font-family:Verdana;"> It was shown that the test product (pH 4.5, 10% urea) significantly elevated stratum corneum hydration and improved the acidic nature of the skin surface by lowering the skin surface pH to a greater extent compared to the reference product. After the 4-week treatment period a significant faster barrier restoration was detected on the test site treated with the test product compared to the reference product. Moreover, the test product strengthens the skin barrier integrity and cohesion. </span><b><span style="font-family:Verdana;">CONCLUSION: </span></b><span style="font-family:Verdana;">The present marketed skin care lotion was shown to increase epidermal barrier function after 4 weeks of application. Balancing and controlling the skin surface pH in subjects with dry and atopic-prone skin by application of the herein tested o/w emulsion with a given pH of 4.5, in combination with a 10% urea content seems to be effective and beneficial. The results are important for the formulation of topical products for dry and atopic-prone skin.</span></span>展开更多
This paper presents the results of the performance quality testing of polyethylene pipes reinforced with aramid fibers, intended for applications such as discharging and gathering oil pipelines, and describes the test...This paper presents the results of the performance quality testing of polyethylene pipes reinforced with aramid fibers, intended for applications such as discharging and gathering oil pipelines, and describes the test rig specifically designed for this purpose. The pipe specimens are submitted to impact with a device that simulates the collision of a pickaxe, and of a backhoe loader. After the impact, the pipes are tested under combined loading comprising internal pressure, and transverse loading; some pipe specimens without previous impact are tested as well. The results show that the reinforced thermoplastic pipes can fully withstand maximal operating pressure levels in the presence of damage and additional transverse loading.展开更多
Estrogen is essential for the skin to maintain its physiological function. The binding of estrogen to the estrogen receptor (ER) activates gene transcription, which has biological effects on the target tissue. Estroge...Estrogen is essential for the skin to maintain its physiological function. The binding of estrogen to the estrogen receptor (ER) activates gene transcription, which has biological effects on the target tissue. Estrogen levels and ER expression are known to decrease with aging and exposure to ultraviolet light (UV);therefore, increased estrogen levels and ER expression may improve age-related changes in the skin. <em>Rehmannia</em> root has been reported to have blood circulation-promoting and anti-inflammatory effects;however, few studies have reported the effects of <em>Rehmannia</em> root on skin. In this study, we examined the effects of <em>Rehmannia glutinosa</em> Libosch. var. purpurea Makino root extract (RE) on ER expression, and estrogen, RE, or their related ingredients increased ER expression in human epidermal keratinocytes, human dermal fibroblasts, and skin models. Moreover, RE increased the production of basic fibroblast growth factor, transforming growth factor <em>β</em>1, and epidermal growth factor. The mixture of estrogen and RE improved extracellular matrix (ECM) production to a greater degree than estrogen and RE independently. Although high population doubling levels (PDL) and UV irradiation downregulated ER expression, RE upregulated ER expression in high PDL cells and UV irradiated cells. In addition, RE increased the expression of epidermal differentiation marker proteins compared to their expression levels in the absence of RE. The collective findings suggest that RE aids in the prevention of skin aging by upregulating the ER expression that has been decreased by aging and UV and promoting estrogen activity, ECM production, and epidermal differentiation.展开更多
The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer ef...The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer effluent treatment, which calls for a significant amount of wastewater-related data. The biological improvement of a urea fertilizer effluent via GPS* simulation was carried out in this work using a methodical process. Using established analytical techniques, temperature, total suspended solids (TSS), biochemical oxygen demand (BOD), total phosphorus (T/), chemical oxygen demand (COD), total nitrogen (TN), total nitrate (NO<sub>3</sub>), electric conductivity (EC), turbidity, residual chlorine, urea, NH<sub>3</sub>, and heavy metals (Cu, Cd, Cr, Pb, Ni, and Fe) were assessed. The research revealed that the measured values from the fertilizer factory outfall effluent had high concentrations of all the physicochemical water quality indicators, with the exception of TSS, PO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup>. These concentrations are higher compared to the authorized limits or suggested values by the Federal Environmental Protection Agency (FEPA). To improve the therapy biologically, however, a modeling and simulation program (GPS-X, version 8.0) was used with the physicochemical information gathered from the studied sample. The results of the treated water simulation showed that the concentrations of BOD<sub>5</sub> and COD had been significantly reduced by 35% and 44%, respectively. Additionally, it was discovered that total phosphorus (TP), nitrate (N), and total nitrogen (TN) were all within the permitted FEPA limit. The results revealed good treatment performance of the wastewater with increasing concentration of acetic acid and sodium hydroxide. Hence, the results of this research work identify the need for proper treatment of fertilizer industry effluents prior to their release into the environment.展开更多
The use of immunoglobulin is successfully applied in different areas of research, diagnostics, medical application and biotechnology. Egg yolk immunoglobulin (IgY) can successfully compete with immunoglobulin (IgG) pr...The use of immunoglobulin is successfully applied in different areas of research, diagnostics, medical application and biotechnology. Egg yolk immunoglobulin (IgY) can successfully compete with immunoglobulin (IgG) produced in the blood of mammals. Recently, successful progresses have been achieved in Japan through industrialization of IgY technology. Using IgY has been shown to provide a safer, more efficient and less expensive method for managing disease-causing pathogens. Helicobacter pylori (H. pylori), a spiral Gram-negative microaerophilic pathogen, it infects over 50% of the population worldwide, and is recognized as the etiologic agent of gastritis, peptic ulcer, and has been linked to the development of gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. It is found that urease is the most abundant protein of H. pylori. Urease is recognized as an essential factor in the organism colonization of the gastric mucosa. The eradication of H. pylori by administration of oral antimicrobials is not always successful and may be associated with adverse effects. Therefore, several treatment regimens have emerged to cure H. pylori infection. Accordingly, a novel approach in prevention and reduction of H. pylori infection has been reported based on production of urease-specific immunoglobulin that can suppress the bacterial colonization through urease-binding by anti-H. pylori urease IgY (IgY-urease). The use of IgY against a pathogenic factor of H. pylori will be a prudent way to suppress the infection.展开更多
Solar system design for green hydrogen production has become the most prominent renewable energy research area, and this has also actively fueled the desire to achieve net-zero emissions. Hydrogen is a promising energ...Solar system design for green hydrogen production has become the most prominent renewable energy research area, and this has also actively fueled the desire to achieve net-zero emissions. Hydrogen is a promising energy carrier because it possesses more energy capacity than fossil fuels and the abundant nature of renewable energy systems can be utilized for green hydrogen production. However, the design of an optimized electrical energy system required for hydrogen production is crucial. Solar energy is indeed beneficial for green hydrogen production and this research designed, discussed, and provided high-level research on HOMER design for green hydrogen production and deployed the energy requirement with ASPEN Plus to optimize the energy system, while also incorporating fuzzy logic and PID control approaches. In addition, a promising technology with a high potential for renewable hydrogen energy is the proton exchange membrane (PEM) electrolyzer. Since its cathode (hydrogen electrode) may be operated over a wide range of pressure, a control process must be added to the system in order for it to work dynamically efficiently. This system can be characterized as an analogous circuit that consists of a resistor, capacitor, and reversible voltage. As a result, this research work also explores the Fuzzy-PID control of the PEM electrolysis system. Both the PID and Fuzzy Logic control systems were simulated using the control simulation program Matlab R2018a, which makes use of Matlab script files and the Simulink environment. Based on the circuit diagram, a transfer function that represents the mathematical model of the plant was created, and the PEM electrolysis control system is determined to be highly significant and applicable to the two control systems. The PI controller, however, has a 30.8% overshoot deficit, but when the fuzzy control system is compared to the PID controller, it is found that the fuzzy control system achieves stability more quickly, demonstrating its benefit over PID.展开更多
文摘This article seeks to emphasize a simplified approach to phylogeny research using complete mitochondrial genomes alone, while touching upon a number of technological perspectives, such as algorithmic selection, which can help improve accuracy and performance in comparative analysis. My results will show that reliable estimations can be obtained by using mitochondrial markers, even among time-extended taxonomical rankings. Six distinct mammalian groups of taxa were selected for comparison. In all cases, mtDNA models generated reliable phylogeny approximations when compared against other independent data, while rendering exceptional computational performance.
文摘Background: This study evaluated the bioequivalence of empagliflozin 12.5 mg/metformin 1000 mg tablets compared to Synjardy® (Empagliflozin 12.5 mg/metformin 1000 mg) tablets in healthy male subjects under fasting conditions. Methods: This was a phase I, randomized, single-dose, two-period, two-sequence, crossover study to evaluate the bioequivalence (BE) profiles of two fixed-dose combinations (FDCs) of empagliflozin/metformin. Cmax, AUC0-t and AUC0-∞ from test and reference formulations were evaluated to access BE. The plasma concentrations were measured using a validated liquid chromatography-mass spectrometry (LC-MS/MS) method. Of the 24 subjects enrolled, 23 completed both periods of the study. The two formulations test and reference were considered bioequivalent if 90% confidence interval (CI) fell within 80.00% - 125.00% for Cmax, AUC0-t and AUC0-∞. Tolerability and safety were assessed throughout the study. Results: The pharmacokinetic (PK) parameters were similar between the test product (T) and reference product (R) Synjardy®. The 90% CI of the test/reference ratios of log-transformed PK parameters point estimates was Cmax: 89.87% (85.68% - 94.27%), AUC0-t: 87.91% (83.65% - 92.39%) and AUC0-∞: 87.16% (82.80% - 91.75%) to empagliflozin and Cmax: 92.19% (87.95% - 96.65%), AUC0-t: 91.38% (84.42% - 98.91%) and AUC0-∞: 93.78% (83.82% - 104.93%) to metformin respectively (90% CI for all PK parameters fell within 80.00% - 125.00%). Conclusion: Our results demonstrated BE between the test and reference formulations of oral tablets of empagliflozin 12.5 mg/metformin 1000 mg (FDC) in healthy male subjects under fasting conditions.
文摘In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.
文摘Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.
文摘Hydrogen energy as a sustainable energy source has most recently become an increasingly important renewable energy resource due to its ability to power fuel cells in zero-emission vehicles and its help in lowering the levels of CO2</sub> emissions. Also, hydrogen has a high energy density and can be utilized in a wide range of applications. It is indeed the fuel of the future but, it is still not entirely apparent how to analyze the most successful ways for hydrogen storage based on technological configuration, nature, and efficiency mechanisms. The historical hydrogen storage technologies as they are presented by the current research have been evaluated, analyzed, and examined in this study. The two categories of hydrogen storage systems are physical-based and material-based.The first category involves storing hydrogen as liquid, cold/cryo-compressed, and compressed gas. Chemical sorption/chemisorption and physical sorption/physisorption are the two primary sub-groups of material-based storage, respectively. The quantitative and qualitative analyses of storage technologies for hydrogen are evaluated in this paper. Also, this report reviews the major safety and reliability issues currently facing hydrogen storage systems. Suggestions are made to assist lay the groundwork for future risk and reliability analysis to ensure safe, dependable operation.
文摘It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experiment, toluene diisocyanate, diphenyl methane diisocyanate and hexamethylenediisocyanate were used to form the polyurethane shell and the effects of them on the heat storage density and the microencapsulation efficiency were investigated. Furthermore, the effect of supercooling prevention agent on the phase change behavior of erythritol was investigated. The microcapsules prepared with toluendiisocyanate monomer showed the highest heat storage density and the higher microencapsulation efficiency. Considerable supercooling phenomenon in the microcapsule was observed and prevented to a certain degree by addition of potassium dihydrogen phosphate and calcium sulfate as the supercooling prevention agent.
文摘Plastic wastes from milk containers, soft drink bottles, plastic wraps, plastic flatware, etc. have been successfully converted into fuel. Two approaches for the conversion of waste post consumer plastic into fuel have been investigated: (1) muffle furnace to reactor liquefaction system; (2) direct liquefaction system. Majority of used plastics are derived from ethylene, propylene, butadiene and benzene. Waste plastics are plastics that are used by the people in their daily life. It is collected from outside and city municipalities. Some of them are coded and rests are non-coded. A developed process discussed in this paper works with most of the waste plastic, both coded and non-coded. The plastics are heated up at 120-380 ℃ temperature to melt. The gaseous vapor is then condensed into liquid fuel.
文摘We screened 15 Agromyces strains from the Microbacteriaceae family and 16 Gordonia strains from the Gordoniaceae family to investigate their biocatalytic ability to reduce carbonyl compounds. Two Agromyces strains (A. soli NBRC109063 and A. humatus NBRC109085) and two Gordonia strains (G. hydrophobica NBRC16057 and G. malaquae NBRC108250) grew well in 230 medium. The stereoselective reduction of various carbonyl compounds using these four strains was investigated. We discovered that these strains can reduce aliphatic and aromatic α-keto esters and an aromatic α-keto amide. On the basis of the conversion rate and stereoselectivity of the alcohols produced, G. hydrophobica NBRC16057 is a potential biocatalyst for the stereoselective reduction of α-keto esters and an aromatic α-keto amide to the corresponding chiral alcohols. Our results also suggest that the reduction of ethyl 2-methylacetoacetate by wet G. hydrophobica NBRC16057 cells in the presence of L-glutamate is useful for the production of chiral ethyl 3-hydroxy-2-methylbutanoate.
文摘This paper tried to develop the optimum procedure for microencapsulating water soluble solid powder with the thermal responsible material by the melting dispersion cooling method. Sodium hydrogen carbonate was adopted as a water soluble solid powder instead of microencapsulating carbon dioxide gas. The shell material was composed of olefin wax and α-tocopherol. In the experiment, the concentration of oil soluble surfactant and the water soluble surfactant species were changed. Sodium hydrogen carbonate was treated in the aqueous solution dissolving the water soluble surfactant to form the finer sodium hydrogen carbonate powder and to increase the content. The microencapsulation efficiency could be increased with the concentration of oil soluble surfactant and considerably increased by treating sodium hydrogen carbonate with the water soluble surfactant. Sodium hydrogen carbonate was protected well from environmental water. The microcapsules showed the thermal responsibility to generate carbon dioxide.
文摘It was tried to microencapsulate the ascorbic acid powder as a redox initiator with tripalmitin by use of the dry coating method. In the experiment, the feed ratio of the amount of tripalmitin to that of ascorbic acid, the coating time and the concentration of ethyl alcohol of pulverizing solvent were changed stepwise. The characteristics of microcapsules such as the content of core material, the yield, the water proof degree, the microencapsulation efficiency and the mean diameter were estimated. The yield, the microencapsulation efficiency and the water proof degree gradually increased with the feed ratio, the coating time and the concentration of pulverizing solvent. The microcapsules showed the thermal responsibility and induced polymerization of methyl methacrylate monomer.
文摘Pressure applied on the top roller of drafting zone is a vital factor on which the quality of ultimate yarn depends. Drafting zone is needed to reduce the mass per unit length of input material. Appropriate contact of top rollers with bottom rollers is necessary to ensure proper drafting. In this paper, the effects of different front top roller pressure of drafting zone on the quality of 20Ne cotton-flax blended yarns (C:L = 45:55) were studied. It was observed that a higher pressure value gives a lower co-efficient of mass variation, imperfections, hairiness and higher evenness, tenacity, elongation properties.
文摘<strong>OBJECTIVE:</strong> <span style="font-family:;" "=""><span style="font-family:Verdana;">The physiological skin surface pH is crucial for several epidermal barrier functions, like stratum corneum integrity, cohesion and restoration. Alterations of the “normal” acidic nature of the skin surface have been shown to correlate with specific skin conditions like aged or inflamed skin and are leading to impaired skin barrier function and formation. It is previously demonstrated that topical acidification in atopic dermatitis improves stratum corneum function, skin barrier structure and clinical signs in dermatitis. Against this background, we examined the impact of a slightly acidic skin care product containing urea on stratum corneum hydration, skin surface pH and epidermal barrier function in subjects with dry skin and atopic diathesis. </span><b><span style="font-family:Verdana;">METHODS:</span></b><span style="font-family:Verdana;"> Stratum corneum hydration, skin surface pH and transepidermal water loss were biophysically measured before and after a 4-week treatment period with the test product (pH 4.5, 10% urea) compared to the reference product in 25 volunteers. In addition, dynamic epidermal barrier parameters like stratum corneum integrity, cohesion and recovery were investigated by using a previously described tape stripping approach. </span><b><span style="font-family:Verdana;">RESULTS:</span></b><span style="font-family:Verdana;"> It was shown that the test product (pH 4.5, 10% urea) significantly elevated stratum corneum hydration and improved the acidic nature of the skin surface by lowering the skin surface pH to a greater extent compared to the reference product. After the 4-week treatment period a significant faster barrier restoration was detected on the test site treated with the test product compared to the reference product. Moreover, the test product strengthens the skin barrier integrity and cohesion. </span><b><span style="font-family:Verdana;">CONCLUSION: </span></b><span style="font-family:Verdana;">The present marketed skin care lotion was shown to increase epidermal barrier function after 4 weeks of application. Balancing and controlling the skin surface pH in subjects with dry and atopic-prone skin by application of the herein tested o/w emulsion with a given pH of 4.5, in combination with a 10% urea content seems to be effective and beneficial. The results are important for the formulation of topical products for dry and atopic-prone skin.</span></span>
文摘This paper presents the results of the performance quality testing of polyethylene pipes reinforced with aramid fibers, intended for applications such as discharging and gathering oil pipelines, and describes the test rig specifically designed for this purpose. The pipe specimens are submitted to impact with a device that simulates the collision of a pickaxe, and of a backhoe loader. After the impact, the pipes are tested under combined loading comprising internal pressure, and transverse loading; some pipe specimens without previous impact are tested as well. The results show that the reinforced thermoplastic pipes can fully withstand maximal operating pressure levels in the presence of damage and additional transverse loading.
文摘Estrogen is essential for the skin to maintain its physiological function. The binding of estrogen to the estrogen receptor (ER) activates gene transcription, which has biological effects on the target tissue. Estrogen levels and ER expression are known to decrease with aging and exposure to ultraviolet light (UV);therefore, increased estrogen levels and ER expression may improve age-related changes in the skin. <em>Rehmannia</em> root has been reported to have blood circulation-promoting and anti-inflammatory effects;however, few studies have reported the effects of <em>Rehmannia</em> root on skin. In this study, we examined the effects of <em>Rehmannia glutinosa</em> Libosch. var. purpurea Makino root extract (RE) on ER expression, and estrogen, RE, or their related ingredients increased ER expression in human epidermal keratinocytes, human dermal fibroblasts, and skin models. Moreover, RE increased the production of basic fibroblast growth factor, transforming growth factor <em>β</em>1, and epidermal growth factor. The mixture of estrogen and RE improved extracellular matrix (ECM) production to a greater degree than estrogen and RE independently. Although high population doubling levels (PDL) and UV irradiation downregulated ER expression, RE upregulated ER expression in high PDL cells and UV irradiated cells. In addition, RE increased the expression of epidermal differentiation marker proteins compared to their expression levels in the absence of RE. The collective findings suggest that RE aids in the prevention of skin aging by upregulating the ER expression that has been decreased by aging and UV and promoting estrogen activity, ECM production, and epidermal differentiation.
文摘The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer effluent treatment, which calls for a significant amount of wastewater-related data. The biological improvement of a urea fertilizer effluent via GPS* simulation was carried out in this work using a methodical process. Using established analytical techniques, temperature, total suspended solids (TSS), biochemical oxygen demand (BOD), total phosphorus (T/), chemical oxygen demand (COD), total nitrogen (TN), total nitrate (NO<sub>3</sub>), electric conductivity (EC), turbidity, residual chlorine, urea, NH<sub>3</sub>, and heavy metals (Cu, Cd, Cr, Pb, Ni, and Fe) were assessed. The research revealed that the measured values from the fertilizer factory outfall effluent had high concentrations of all the physicochemical water quality indicators, with the exception of TSS, PO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup>. These concentrations are higher compared to the authorized limits or suggested values by the Federal Environmental Protection Agency (FEPA). To improve the therapy biologically, however, a modeling and simulation program (GPS-X, version 8.0) was used with the physicochemical information gathered from the studied sample. The results of the treated water simulation showed that the concentrations of BOD<sub>5</sub> and COD had been significantly reduced by 35% and 44%, respectively. Additionally, it was discovered that total phosphorus (TP), nitrate (N), and total nitrogen (TN) were all within the permitted FEPA limit. The results revealed good treatment performance of the wastewater with increasing concentration of acetic acid and sodium hydroxide. Hence, the results of this research work identify the need for proper treatment of fertilizer industry effluents prior to their release into the environment.
文摘The use of immunoglobulin is successfully applied in different areas of research, diagnostics, medical application and biotechnology. Egg yolk immunoglobulin (IgY) can successfully compete with immunoglobulin (IgG) produced in the blood of mammals. Recently, successful progresses have been achieved in Japan through industrialization of IgY technology. Using IgY has been shown to provide a safer, more efficient and less expensive method for managing disease-causing pathogens. Helicobacter pylori (H. pylori), a spiral Gram-negative microaerophilic pathogen, it infects over 50% of the population worldwide, and is recognized as the etiologic agent of gastritis, peptic ulcer, and has been linked to the development of gastric adenocarcinoma and mucosa associated lymphoid tissue lymphoma. It is found that urease is the most abundant protein of H. pylori. Urease is recognized as an essential factor in the organism colonization of the gastric mucosa. The eradication of H. pylori by administration of oral antimicrobials is not always successful and may be associated with adverse effects. Therefore, several treatment regimens have emerged to cure H. pylori infection. Accordingly, a novel approach in prevention and reduction of H. pylori infection has been reported based on production of urease-specific immunoglobulin that can suppress the bacterial colonization through urease-binding by anti-H. pylori urease IgY (IgY-urease). The use of IgY against a pathogenic factor of H. pylori will be a prudent way to suppress the infection.
文摘Solar system design for green hydrogen production has become the most prominent renewable energy research area, and this has also actively fueled the desire to achieve net-zero emissions. Hydrogen is a promising energy carrier because it possesses more energy capacity than fossil fuels and the abundant nature of renewable energy systems can be utilized for green hydrogen production. However, the design of an optimized electrical energy system required for hydrogen production is crucial. Solar energy is indeed beneficial for green hydrogen production and this research designed, discussed, and provided high-level research on HOMER design for green hydrogen production and deployed the energy requirement with ASPEN Plus to optimize the energy system, while also incorporating fuzzy logic and PID control approaches. In addition, a promising technology with a high potential for renewable hydrogen energy is the proton exchange membrane (PEM) electrolyzer. Since its cathode (hydrogen electrode) may be operated over a wide range of pressure, a control process must be added to the system in order for it to work dynamically efficiently. This system can be characterized as an analogous circuit that consists of a resistor, capacitor, and reversible voltage. As a result, this research work also explores the Fuzzy-PID control of the PEM electrolysis system. Both the PID and Fuzzy Logic control systems were simulated using the control simulation program Matlab R2018a, which makes use of Matlab script files and the Simulink environment. Based on the circuit diagram, a transfer function that represents the mathematical model of the plant was created, and the PEM electrolysis control system is determined to be highly significant and applicable to the two control systems. The PI controller, however, has a 30.8% overshoot deficit, but when the fuzzy control system is compared to the PID controller, it is found that the fuzzy control system achieves stability more quickly, demonstrating its benefit over PID.