期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Use of Scaled Models to Evaluate Reinforcement Efficiency in Damaged Main Gas Pipelines to Prevent Avalanche Failure
1
作者 Nurlan Zhangabay Marco Bonopera +2 位作者 Konstantin Avramov Maryna Chernobryvko Svetlana Buganova 《Computer Modeling in Engineering & Sciences》 2025年第10期241-261,共21页
This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure.This study establishes the use of scaled-down experimental models for assessing the d... This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure.This study establishes the use of scaled-down experimental models for assessing the dynamic strength of damaged pipeline sections reinforced with wire wrapping or composite sleeves.A generalized dynamic model is introduced for numerical simulation to evaluate the effectiveness of reinforcement techniques.The model incorporates the elastoplastic behavior of pipe and wire materials,the influence of temperature on mechanical properties,the contact interaction between the pipe and the reinforcement components(including pretensioning),and local material failure under transient internal pressure.Based on these parameters,a finite element model was developed using ANSYS 19.2 to enable parametric studies.The accuracy of the proposed model was verified by comparing the simulation results with the experimental findings.Pipeline section samples containing non-penetrating longitudinal crackswere subjected to comparative analyses and transient pressure until critical failure.The unreinforced and steel wire-wrapped sections were investigated.The results confirm the feasibility of applying the computational model to study the dynamic strength of reinforced damaged pipe sections.Furthermore,pipelines with longitudinal cracks reinforced using circular composite overlays with orthotropic mechanical properties were examined,and recommendations are provided for selecting the geometric parameters of such overlays. 展开更多
关键词 Composite overlay crack-like defect FINITE-ELEMENT local failure multiscale modeling pipeline safety structural integrity thin-walled structure
在线阅读 下载PDF
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect 被引量:2
2
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 Crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部