This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure.This study establishes the use of scaled-down experimental models for assessing the d...This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure.This study establishes the use of scaled-down experimental models for assessing the dynamic strength of damaged pipeline sections reinforced with wire wrapping or composite sleeves.A generalized dynamic model is introduced for numerical simulation to evaluate the effectiveness of reinforcement techniques.The model incorporates the elastoplastic behavior of pipe and wire materials,the influence of temperature on mechanical properties,the contact interaction between the pipe and the reinforcement components(including pretensioning),and local material failure under transient internal pressure.Based on these parameters,a finite element model was developed using ANSYS 19.2 to enable parametric studies.The accuracy of the proposed model was verified by comparing the simulation results with the experimental findings.Pipeline section samples containing non-penetrating longitudinal crackswere subjected to comparative analyses and transient pressure until critical failure.The unreinforced and steel wire-wrapped sections were investigated.The results confirm the feasibility of applying the computational model to study the dynamic strength of reinforced damaged pipe sections.Furthermore,pipelines with longitudinal cracks reinforced using circular composite overlays with orthotropic mechanical properties were examined,and recommendations are provided for selecting the geometric parameters of such overlays.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘This research extends ongoing efforts to develop methods for reinforcing damaged main gas pipelines to prevent catastrophic failure.This study establishes the use of scaled-down experimental models for assessing the dynamic strength of damaged pipeline sections reinforced with wire wrapping or composite sleeves.A generalized dynamic model is introduced for numerical simulation to evaluate the effectiveness of reinforcement techniques.The model incorporates the elastoplastic behavior of pipe and wire materials,the influence of temperature on mechanical properties,the contact interaction between the pipe and the reinforcement components(including pretensioning),and local material failure under transient internal pressure.Based on these parameters,a finite element model was developed using ANSYS 19.2 to enable parametric studies.The accuracy of the proposed model was verified by comparing the simulation results with the experimental findings.Pipeline section samples containing non-penetrating longitudinal crackswere subjected to comparative analyses and transient pressure until critical failure.The unreinforced and steel wire-wrapped sections were investigated.The results confirm the feasibility of applying the computational model to study the dynamic strength of reinforced damaged pipe sections.Furthermore,pipelines with longitudinal cracks reinforced using circular composite overlays with orthotropic mechanical properties were examined,and recommendations are provided for selecting the geometric parameters of such overlays.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.