An individual's mental health influences their capacity to think effectively,feel emotionally stable,and perform daily activities.As mental health concerns become more prevalent worldwide,new awareness and diagnos...An individual's mental health influences their capacity to think effectively,feel emotionally stable,and perform daily activities.As mental health concerns become more prevalent worldwide,new awareness and diagnostic and treatment tactics are needed.Digital tools and technology are helping solve these problems by providing scalable,tailored solutions for large populations.This detailed review examines mental health‐promoting internet tools.Smartphone applications,web‐based therapy systems,wearable tech,artificial intelligence‐powered resources,and virtual reality(VR)technologies were evaluated for efficacy and side effects.PubMed,PsycINFO,Scopus,IEEE Xplore,and Google Scholar were carefully searched.Search terms included“digital mental health tools,”“online therapy,”and“AI in mental health.”Randomized controlled trials,cohort studies,cross‐sectional studies,systematic reviews,and meta‐analyses of digital technology and mental health were included from among the literature published after 2010.Cognitive behavioral therapy methods,mood monitoring,and mindfulness exercises are among the numerous features of smartphone applications that have been demonstrated to mitigate symptoms of anxiety,depression,and tension.Online therapy platforms let marginalized individuals obtain therapy remotely.Wearable technology may detect heart rate,blood pressure,and sleep length,which may reveal mental health difficulties.Chatbots employ machine learning algorithms and natural language processing to deliver customized support and show promise for quick intervention.Exposure therapy for anxiety and trauma is increasingly using virtual reality environments.Although digital mental health therapies face challenges in relation to data privacy,limited long‐term efficacy,and technological inequality,digital technologies are modernizing mental healthcare.By offering inexpensive and effective alternatives to traditional therapies,digital technologies may help healthcare systems meet the growing demand for mental health services and overall well‐being.展开更多
To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold for...To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold forming sheet of the AZ31 alloy after being annealed under various conditions.The activities were focused on the fracture pattern,limit drawing ratio(LDR),deformation load,thickness distribution,anisotropic effect,as well as the influences of the annealing conditions and tool configuration on them.The results display that punch shoulder radius instead of die clearance,has much influence on the thickness distribution.The anisotropy is remarkable in cold working,which adversely impacts the LDR.The fracture often happens on the side wall at an angle to axis of the deformed specimen.The results also imply that the LDR for the material under present experimental conditions is 1.72,and annealing the material at 450 ℃ for 1 h may be preferable for the cold deep drawing.展开更多
The deformed microstructures of a TiNi shape memory alloy were investigated in present study to clarify the deformation mechanism.It is found that the stress-strain curve was divided into three stages based on the def...The deformed microstructures of a TiNi shape memory alloy were investigated in present study to clarify the deformation mechanism.It is found that the stress-strain curve was divided into three stages based on the deformation modes.The cause of martensitic stabilization effect was also interpreted by paying special attention to the deformed microstructures.Transmission electron microscopic examination revealed that at the early stage of deformation martensitic reorientation and compound twinning relieved some of the elastic strain energy stored in martensite,and this contributes to the martensitic stabilization effect.However,when deformation strain became larger,the density of dislocations increased correspondingly.Antiphase boundaries were also found.The degree of ordering was therefore decreased due to dislocations and antiphase boundaries.So disordering was another cause of martensitic stabilization effect.In the middle stage of deformation martensitic stabilization was attributed to the two reasons above.展开更多
In this paper, several widely applied fracture criteria were first numerically examined and the crack-tip-region Jntegral criterion was confirmed to be more applicable to predict fracture angle in an elastic-plastic m...In this paper, several widely applied fracture criteria were first numerically examined and the crack-tip-region Jntegral criterion was confirmed to be more applicable to predict fracture angle in an elastic-plastic multiphase material. Then, the crack propagation in an idealized an elastic-plastic finite element method. The variation dendritic two-phase AI-7%Si alloy was modeled using of crack growth driving force with crack extension was also demonstrated. It is found that the crack path is significantly influenced by the presence of α-phase near the crack tip, and the crack growth driving force varies drastically from place to place. Lastly, the simulated fracture path in the two-phase model alloy was compared with the experimentally observed fracture path.展开更多
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote...We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.展开更多
In accordance with the definition of diffusivity, the origin of coordinate system of the original diffusion equation is set at a point in the solvent material. Kirkendall revealed that Cu atoms, Zn atoms and vacancies...In accordance with the definition of diffusivity, the origin of coordinate system of the original diffusion equation is set at a point in the solvent material. Kirkendall revealed that Cu atoms, Zn atoms and vacancies move simultaneously in the interdiffusion region. This indicates that the original diffusion equation is a moving coordinate system for the experimentation system outside the diffusion region. The diffusion region space which means vacancies and interstices among atoms plays an important role in the diffusion phenomena. The theoretical equation of the Kirkendall effect is reasonably obtained as a shift between coordinate systems of the diffusion equation. The situation is similar to the well-known Doppler effect in the wave equation. Boltzmann transformed the original diffusion equation of a binary system into the nonlinear ordinary differential equation in accordance with the parabolic law. In the previous works, the solutions of the diffusion equation transformed by Boltzmann were analytically obtained and we found that the well-known Darken equation is mathematically wrong. In the present study, we found that the so-called intrinsic diffusivity corresponds in appearance to the physical solution obtained previously. However, the intrinsic diffusivity itself conceived in the diffusion research history is essentially nonexistent.展开更多
In this study, dynamic characteristics of the small base isolation system using new friction bearings are investigated by excitation experiment, and compared to other one using previous bearings. Peak amplitude of the...In this study, dynamic characteristics of the small base isolation system using new friction bearings are investigated by excitation experiment, and compared to other one using previous bearings. Peak amplitude of the acceleration response waves on the small base isolation system is decreased to about 10%-25% compared to the input waves. Also root mean square amplitude is decreased to about 10%-40%. In case of the ball embedded a cylindrical sponge, the new bearing, the damping ratio increases with increasing width of the cylindrical sponge. The natural frequency does not change. On the other hand, in case of the marble plate that is previous bearing, the damping ratio increases with increasing curvature radius of the marble plate, the natural frequency also increases. Therefore, the small base isolation system using new friction bearing provides better performance. The responses of the base isolation system indicate nonlinier effects by friction force.展开更多
The nonlinear diffusion equation for a binary system interdiffusion was analytically solved in the previous work. The theoretical relation of Kirkendall effect was also derived in the previous work. These new results ...The nonlinear diffusion equation for a binary system interdiffusion was analytically solved in the previous work. The theoretical relation of Kirkendall effect was also derived in the previous work. These new results have not yet been concretely applied to actual diffusion problems. In the present work, it is revealed that the previous results reproduce the experimental concentration profile by taking account of the movement of diffusion region space. It is thus actually confirmed that any problems of binary system interdiffusion can be solved by the new analytical method if even diffusivities of self-diffusion and impurity diffusion in the materials concerned are given. The method for solving interdiffusion problems of many elements system, which is extremely important for the development of new useful materials, is also reasonably discussed. Further, it is revealed that the concept of intrinsic diffusion is unsuitable for the diffusion theory. The fundamental theory of diffusion discussed here will be useful for analyzing actual diffusion problems in future.展开更多
Martensitic stabilization caused by deformation in a TiNi shape memory alloy was studied.Special attention was paid to the deformed microstructures to identify the cause of martensitic stabilization.Martensitic stabil...Martensitic stabilization caused by deformation in a TiNi shape memory alloy was studied.Special attention was paid to the deformed microstructures to identify the cause of martensitic stabilization.Martensitic stabilization was demonstrated by differential scanning calorimetry for the tensioned TiNi shape memory alloy.Transmission electron microscopy revealed that antiphase boundaries were formed because of the fourfold dissociation of [110]B19' super lattice dislocations and were preserved after reverse transformation due to the lattice correspondence.Martensitic stabilization was attributed to dislocations induced by deformation,which reduced the ordering degree of the microstructure,spoiled the reverse path from martensite to parent phase compared with thermoelastic transformation,and imposed resistance on phase transformation through the stress field.展开更多
The interactions of the shock with the boundary layer of the cold gas behind the contact in many different conditions.i.e. three kinds of test gases and three kinds of sound speed ratios across the contact,were explor...The interactions of the shock with the boundary layer of the cold gas behind the contact in many different conditions.i.e. three kinds of test gases and three kinds of sound speed ratios across the contact,were explored by numerical study.The trajectories of the transmitted shock in cold gas flow and the development of shock bifurcation in the process of interaction with boundary layer are illustrated by many kinds of figures(e.g.the time-distance diagrams of the acoustic impedance contours on the axis,the pressure and density contours and the static pressure distributions on the axis.).展开更多
The interaction of the shock reflected at a secondary diaphragm with the primary contact in six cases, i.e. the strengths and shapes of the contact surface are different, were explored by numerical study. The influenc...The interaction of the shock reflected at a secondary diaphragm with the primary contact in six cases, i.e. the strengths and shapes of the contact surface are different, were explored by numerical study. The influences of the strength and shape of the contact on the developing wave pattern and the quality of the test gas are illustrated by many kinds of figures (e.g. the time-distance diagrams of the acoustic impedance contours on the axis, the acoustic impedance contours, and the time histories of pilot and static pressures).展开更多
文摘An individual's mental health influences their capacity to think effectively,feel emotionally stable,and perform daily activities.As mental health concerns become more prevalent worldwide,new awareness and diagnostic and treatment tactics are needed.Digital tools and technology are helping solve these problems by providing scalable,tailored solutions for large populations.This detailed review examines mental health‐promoting internet tools.Smartphone applications,web‐based therapy systems,wearable tech,artificial intelligence‐powered resources,and virtual reality(VR)technologies were evaluated for efficacy and side effects.PubMed,PsycINFO,Scopus,IEEE Xplore,and Google Scholar were carefully searched.Search terms included“digital mental health tools,”“online therapy,”and“AI in mental health.”Randomized controlled trials,cohort studies,cross‐sectional studies,systematic reviews,and meta‐analyses of digital technology and mental health were included from among the literature published after 2010.Cognitive behavioral therapy methods,mood monitoring,and mindfulness exercises are among the numerous features of smartphone applications that have been demonstrated to mitigate symptoms of anxiety,depression,and tension.Online therapy platforms let marginalized individuals obtain therapy remotely.Wearable technology may detect heart rate,blood pressure,and sleep length,which may reveal mental health difficulties.Chatbots employ machine learning algorithms and natural language processing to deliver customized support and show promise for quick intervention.Exposure therapy for anxiety and trauma is increasingly using virtual reality environments.Although digital mental health therapies face challenges in relation to data privacy,limited long‐term efficacy,and technological inequality,digital technologies are modernizing mental healthcare.By offering inexpensive and effective alternatives to traditional therapies,digital technologies may help healthcare systems meet the growing demand for mental health services and overall well‐being.
文摘To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold forming sheet of the AZ31 alloy after being annealed under various conditions.The activities were focused on the fracture pattern,limit drawing ratio(LDR),deformation load,thickness distribution,anisotropic effect,as well as the influences of the annealing conditions and tool configuration on them.The results display that punch shoulder radius instead of die clearance,has much influence on the thickness distribution.The anisotropy is remarkable in cold working,which adversely impacts the LDR.The fracture often happens on the side wall at an angle to axis of the deformed specimen.The results also imply that the LDR for the material under present experimental conditions is 1.72,and annealing the material at 450 ℃ for 1 h may be preferable for the cold deep drawing.
文摘The deformed microstructures of a TiNi shape memory alloy were investigated in present study to clarify the deformation mechanism.It is found that the stress-strain curve was divided into three stages based on the deformation modes.The cause of martensitic stabilization effect was also interpreted by paying special attention to the deformed microstructures.Transmission electron microscopic examination revealed that at the early stage of deformation martensitic reorientation and compound twinning relieved some of the elastic strain energy stored in martensite,and this contributes to the martensitic stabilization effect.However,when deformation strain became larger,the density of dislocations increased correspondingly.Antiphase boundaries were also found.The degree of ordering was therefore decreased due to dislocations and antiphase boundaries.So disordering was another cause of martensitic stabilization effect.In the middle stage of deformation martensitic stabilization was attributed to the two reasons above.
文摘In this paper, several widely applied fracture criteria were first numerically examined and the crack-tip-region Jntegral criterion was confirmed to be more applicable to predict fracture angle in an elastic-plastic multiphase material. Then, the crack propagation in an idealized an elastic-plastic finite element method. The variation dendritic two-phase AI-7%Si alloy was modeled using of crack growth driving force with crack extension was also demonstrated. It is found that the crack path is significantly influenced by the presence of α-phase near the crack tip, and the crack growth driving force varies drastically from place to place. Lastly, the simulated fracture path in the two-phase model alloy was compared with the experimentally observed fracture path.
基金This research is based on results obtained from Project JPNP07015the New Energy and Industrial Technology Development Organization(NEDO)and is also partly supported by the Japan Society for the Promotion of Science KAKENHI Program(Grant No.21K18795)。
文摘We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.
文摘In accordance with the definition of diffusivity, the origin of coordinate system of the original diffusion equation is set at a point in the solvent material. Kirkendall revealed that Cu atoms, Zn atoms and vacancies move simultaneously in the interdiffusion region. This indicates that the original diffusion equation is a moving coordinate system for the experimentation system outside the diffusion region. The diffusion region space which means vacancies and interstices among atoms plays an important role in the diffusion phenomena. The theoretical equation of the Kirkendall effect is reasonably obtained as a shift between coordinate systems of the diffusion equation. The situation is similar to the well-known Doppler effect in the wave equation. Boltzmann transformed the original diffusion equation of a binary system into the nonlinear ordinary differential equation in accordance with the parabolic law. In the previous works, the solutions of the diffusion equation transformed by Boltzmann were analytically obtained and we found that the well-known Darken equation is mathematically wrong. In the present study, we found that the so-called intrinsic diffusivity corresponds in appearance to the physical solution obtained previously. However, the intrinsic diffusivity itself conceived in the diffusion research history is essentially nonexistent.
文摘In this study, dynamic characteristics of the small base isolation system using new friction bearings are investigated by excitation experiment, and compared to other one using previous bearings. Peak amplitude of the acceleration response waves on the small base isolation system is decreased to about 10%-25% compared to the input waves. Also root mean square amplitude is decreased to about 10%-40%. In case of the ball embedded a cylindrical sponge, the new bearing, the damping ratio increases with increasing width of the cylindrical sponge. The natural frequency does not change. On the other hand, in case of the marble plate that is previous bearing, the damping ratio increases with increasing curvature radius of the marble plate, the natural frequency also increases. Therefore, the small base isolation system using new friction bearing provides better performance. The responses of the base isolation system indicate nonlinier effects by friction force.
文摘The nonlinear diffusion equation for a binary system interdiffusion was analytically solved in the previous work. The theoretical relation of Kirkendall effect was also derived in the previous work. These new results have not yet been concretely applied to actual diffusion problems. In the present work, it is revealed that the previous results reproduce the experimental concentration profile by taking account of the movement of diffusion region space. It is thus actually confirmed that any problems of binary system interdiffusion can be solved by the new analytical method if even diffusivities of self-diffusion and impurity diffusion in the materials concerned are given. The method for solving interdiffusion problems of many elements system, which is extremely important for the development of new useful materials, is also reasonably discussed. Further, it is revealed that the concept of intrinsic diffusion is unsuitable for the diffusion theory. The fundamental theory of diffusion discussed here will be useful for analyzing actual diffusion problems in future.
文摘Martensitic stabilization caused by deformation in a TiNi shape memory alloy was studied.Special attention was paid to the deformed microstructures to identify the cause of martensitic stabilization.Martensitic stabilization was demonstrated by differential scanning calorimetry for the tensioned TiNi shape memory alloy.Transmission electron microscopy revealed that antiphase boundaries were formed because of the fourfold dissociation of [110]B19' super lattice dislocations and were preserved after reverse transformation due to the lattice correspondence.Martensitic stabilization was attributed to dislocations induced by deformation,which reduced the ordering degree of the microstructure,spoiled the reverse path from martensite to parent phase compared with thermoelastic transformation,and imposed resistance on phase transformation through the stress field.
文摘The interactions of the shock with the boundary layer of the cold gas behind the contact in many different conditions.i.e. three kinds of test gases and three kinds of sound speed ratios across the contact,were explored by numerical study.The trajectories of the transmitted shock in cold gas flow and the development of shock bifurcation in the process of interaction with boundary layer are illustrated by many kinds of figures(e.g.the time-distance diagrams of the acoustic impedance contours on the axis,the pressure and density contours and the static pressure distributions on the axis.).
文摘The interaction of the shock reflected at a secondary diaphragm with the primary contact in six cases, i.e. the strengths and shapes of the contact surface are different, were explored by numerical study. The influences of the strength and shape of the contact on the developing wave pattern and the quality of the test gas are illustrated by many kinds of figures (e.g. the time-distance diagrams of the acoustic impedance contours on the axis, the acoustic impedance contours, and the time histories of pilot and static pressures).