Rural economic development can differ intensely among municipalities within the same region. The economic activity disparity among them makes public policy actions difficult. It is possible to find highly efficient an...Rural economic development can differ intensely among municipalities within the same region. The economic activity disparity among them makes public policy actions difficult. It is possible to find highly efficient and globally competitive producers, as well as those producing for subsistence, in the same area. This disparity stands out the total productivity importance of the factors of production in the agricultural sector, especially the productivity of the land. The way the land is occupied in the rural area, namely crops, pastures, reforestation and other areas, can be indicative of the productivity of the land factor and the value of agricultural production. The products that compose the value of the agricultural production present different land occupation through their own productive characteristic. The main objective of this work was to measure the association between the production value of groups of agricultural products and the diversified uses of the rural area in the production of the municipalities in the state of Sao Paulo. In this research, 52 agricultural products produced in 2008 were used, grouped in five production value variables and other nine variables of the land use in production of the municipalities in Sao Paulo. The multivariate statistical technique of canonical correlation was used to measure the association between the product variables group of the production value with the land use group in agricultural activities. It was concluded that there is a strong correlation (94.3%) in the first pair of canonical variables, representing the production value and the land use, allowing groups of municipalities to be formed at different stages of development in agricultural production. It can be verified that 61.8% of the municipalities in the state were below the average in the production group and land use and that only 4.8% were above average for the production variables group and with values below the average in land use. The stages of agricultural development in the municipalities of Sao Paulo and the association between the production and use of the area can contribute to identify the direction of public policies to increase the productivity of the agricultural sector.展开更多
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i...In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life.展开更多
The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.T...The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.展开更多
To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold for...To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold forming sheet of the AZ31 alloy after being annealed under various conditions.The activities were focused on the fracture pattern,limit drawing ratio(LDR),deformation load,thickness distribution,anisotropic effect,as well as the influences of the annealing conditions and tool configuration on them.The results display that punch shoulder radius instead of die clearance,has much influence on the thickness distribution.The anisotropy is remarkable in cold working,which adversely impacts the LDR.The fracture often happens on the side wall at an angle to axis of the deformed specimen.The results also imply that the LDR for the material under present experimental conditions is 1.72,and annealing the material at 450 ℃ for 1 h may be preferable for the cold deep drawing.展开更多
The problem of capacity shortage in some airports needs to be dealt with sustainable solutions including a more efficient use of the existing runway slots at the airports. The Collaborative Decision Making(CDM) is a...The problem of capacity shortage in some airports needs to be dealt with sustainable solutions including a more efficient use of the existing runway slots at the airports. The Collaborative Decision Making(CDM) is an important approach applied to Air Traffic Management(ATM)to achieve this efficient use of the slots allocation. Using the Matching approach for two-sided markets of Game theory, the Top Trading Cycle CDM(TTC-CDM) algorithm developed in this research is an extension of the CDM approach aggregating the Ground Delay Program(GDP)of the air sector. The paper compared the developed TTC-CDM model to the existing models such as the conventional Compression algorithm in CDM, the Trade Cycle algorithm and the Deferred Acceptance CDM(DA-CDM) model to evaluate the performance of the proposed model. Through a case study, the results show the effective application of TTC-CDM model to slot allocation in ATM and also presents the advantage of considering the preferences of airport managers beside ATC controllers and airlines in the decision processing.展开更多
The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.%...The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.展开更多
NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperat...NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance.展开更多
The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of th...The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and LevenbergeM arquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.展开更多
Due to their hexagonal crystal structure,magnesium alloys have relatively low workability at room temperature.In this study,the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot co...Due to their hexagonal crystal structure,magnesium alloys have relatively low workability at room temperature.In this study,the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing,numerical modeling and microstructural analyses.Hot deformation tests are performed at temperatures of 250℃ to 400℃ under strain rates of 0.01 to 1.0 s^(−1).Transmission electron microscopy is used to reveal the presence of dynamic recrystallization(DRX),dynamic recovery(DRY),cracks and shear bands.To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy,the authors use Johnson–Cook damage model in a 3D finite element simulation.The optimal hot workability of magnesium alloy is found at a temperature(T)of 400℃ and strain rate(ε)of 0.01 s^(−1).Stability is found at a lower strain rate,and instability is found at a higher strain rate.展开更多
The present research objective is to investigate the effect of boron nitride nanoparticles reinforcement on dry sliding wear behavior of pure Magnesium and magnesium nanocomposites.The fabricated nanocomposites contai...The present research objective is to investigate the effect of boron nitride nanoparticles reinforcement on dry sliding wear behavior of pure Magnesium and magnesium nanocomposites.The fabricated nanocomposites contains varied percentages of boron nitride such as 0%(pure Mg),0.5%,1.5%and 2.5%were synthesized by using powder metallurgy technique and followed by a hot working process called hot extrusion.The pin on disk equipment was used for conducting the wear tests for traditional loads of 5 N,7 N and 10 N at different sliding speeds of 0.6,0.9 and 1.2 m/s against the steel disk at room temperature.For all traditional loads and sliding speeds,the changes in wear rate and friction co-efficient(μ)with respect to sliding distances were observed and analyzed.The wear characteristics are observed with the help of scanning electron microscopy under given test conditions.To investigate dominant wear mechanisms for various test conditions,the morphologies of all worn composites surfaces were analyzed.Final results show that,for all nanocomposites the wear level raises with respect to the sliding speeds and loads.Magnesium reinforced with 0.5%boron nitride shows lower wear rates and low friction coefficient values compare with magnesium reinforced with 1.5%boron nitride and 2.5%boron nitride nanocomposites.展开更多
This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes thefeatures that make such materials difficult to grind. The possibilities of exerting a positive inf...This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes thefeatures that make such materials difficult to grind. The possibilities of exerting a positive influence upon machining conditions,especially through the proper application of grinding fluids, are briefly presented. Both the precise methodologies for, and theresults of, the experimental tests carried out on flat surfaces are also detailed. The aim of these tests was to determine the influenceof the application of two types of grinding liquid (Ecocut Mikro Plus 82 and Biocut 3000) upon the grinding force values andsurface roughness of the machined workpieces made from three nickel alloys (Nickel 201, INCONEL~ alloy 600, and MONEL^alloy 400). An additional goal of the tests was to determine the influence of grinding wheel structure on the course and results ofthe machining process. The results indicate that the physical and chemical properties of Biocut 3000 enabled the most advanta-geous properties of the machined surface roughness, alongside a simultaneous increase in grinding power, when compared to theresults when applying Ecocut Mikro Plus 82. The results showed an almost inversely proportional dependence upon the specifictangential grinding force Ft' and arithmetic mean deviation of the surface profile Ra values, especially in cases of machining Nickel201 and INCONEL alloy 600. The original traverse grinding methodology used in the tests made it possible to assess the changesof the grinding conditions within the conventionally selected zones.展开更多
Ni-Cr based nanostructured feedstock powder was prepared by mechanical milling technique involving repeated welding, fracturing, and re-welding of powder particles in a planetary ball mill. The milled nanocrystalline ...Ni-Cr based nanostructured feedstock powder was prepared by mechanical milling technique involving repeated welding, fracturing, and re-welding of powder particles in a planetary ball mill. The milled nanocrystalline powders were used to coat carbon steel tubes using high velocity oxygen fuel(HVOF) thermal spraying process. The characterization of the feedstock powder and HVOF coated substrates was performed using optical microscope, X-ray diffractometer(XRD), scanning electron microscope(SEM), high resolution transmission electron microscope(HR-TEM), energy dispersive spectrometer(EDS) and microhardness tests. The coated and uncoated samples were subjected to different thermal cycles and characterized for their phase changes, metallurgical changes and microhardness variations. Ni-Cr nanostructured coated samples exhibited higher mechanical and metallurgical properties compared to their conventionally coated counter parts. The results showed that the nanostructured coating possessed a more uniform and denser microstructure than the conventional coating.展开更多
The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input par...The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input parameters were friction pressure (F), upset pressure (U), speed (S) and burn-off length (B), and responses were hardness and ultimate tensile strength. To achieve the quality of the welded joint, the ultimate tensile strength and hardness were maximized, and response surface methodology (RSM) was applied to create separate regression equations of tensile strength and hardness. Intelligent optimization technique such as genetic algorithm was used to predict the Pareto optimal solutions. Depending upon the application, preferred suitable welding parameters were selected. It was inferred that the changing hardness and tensile strength of the friction welded joint influenced the upset pressure, friction Pressure and speed of rotation.展开更多
In order to avoid mistakes and to save a great deal of time in analysis, an innovative methodology was developed that can analyze the well operations and rig characteristics involved to define the best emergency disco...In order to avoid mistakes and to save a great deal of time in analysis, an innovative methodology was developed that can analyze the well operations and rig characteristics involved to define the best emergency disconnect sequence (EDS) available. A solution was developed based on the characteristics of the rigs and blowout preventers (BOPs), and six variables were considered that directly affect the choice of EDS. All possible combinations of 64 scenarios were analyzed, and the priority of choice of the EDS was defined empirically. This paper presents an approach to EDS risk management and examples of exposure time (time without riser safety margin and shear capability) for the same well, which can be lowered from 13% to 0.1%. The impact of this reduction is related to the ability of the BOP to cut some of the heavy casings, in addition to improved availability of EDS modes. This implementation opened up many possibilities for the performance of risk exposure analysis, enabling comparison of several BOP configurations of contracted rigs and selection of the best options. This innovative approach allowed a better management of the rig schedules, prioritizing safety aspects and making it possible to allocate the fleet in a systematic way.展开更多
The formability of bake hardened steel (thickness 0.82 mm), and the extra galvannealed IF steel (thickness 0.82 mm) have been studied. The suitability of the above steels for forming applications has been critical...The formability of bake hardened steel (thickness 0.82 mm), and the extra galvannealed IF steel (thickness 0.82 mm) have been studied. The suitability of the above steels for forming applications has been critically examined. The microstructure, tensile properties, and formability parameters of the above sheet metals were determined. The manufacturing process of the steels and the significance with reference to its formability were studied.展开更多
This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used f...This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used for joining of acrylonitrile butadiene styrene(ABS)composites.The dissimilar thermoplastics were processed for maintaining a useful range of melt flow properties followed by preparation of feed stock filament for fused deposition modeling(FDM)process through screw extrusion.Finally,3D printed PA6 based consumable rapid tool(RT)was prepared for MFSW.The joints prepared were subjected to flexural,hardness,morphological and thermal testing.The study has suggested the that maximum mechanical strength was obtained for sample welded at 1400 r/min,50 mm/min transverse speed and 3 mm plunge depth,whereas the minimum mechanical strength was obtained for sample welded at 1000 r/min,30 mm/min transverse speed and 2 mm plunge depth.The results are also supported with thermal analysis and photomicrographs.展开更多
Creep strength enhanced ferritic(CSEF) steels are used in advanced power plant systems for high temperature applications. P92(Cr–W–Mo–V)steel, classified under CSEF steels, is a candidate material for piping, tubin...Creep strength enhanced ferritic(CSEF) steels are used in advanced power plant systems for high temperature applications. P92(Cr–W–Mo–V)steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis(GRA).Bead on plate(BOP) trials were carried out using a 3.5 k W diffusion cooled slab CO_2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone(HAZ) width. Analysis of variance(ANOVA) has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 k W, welding speed of 1 m/min and focal plane at-4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.展开更多
AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the ...AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the standard pin-on-disc wear test equipment. The tests were conducted under a normal load of 10 N at different sliding speeds ranging from 0.60 to 1.2 m/s for distance up to 2000 m. The wear mechanisms of the worn out surface were studied using SEM analysis. The influence of test parameters on wear rate of the pins was established using a linear regression model statistically. Compared with the AZ31B magnesium alloy, the nano-composite shows lower wear rates due to higher hardness improvement caused by the reinforcement. The wear mechanism appears to be a mix-up of ploughing, rows of furrows, delamination and oxidation.展开更多
Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high...Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high level of productivity and sustainability is a substantive issue.The recent paper outlines the lubrication and cooling technologies and mediums that are used for grinding.Furthermore,it provides a basis for a critical assessment of the different lubrication/cooling techniques in terms of machining outputs,environmental impact,hygiene effect,etc.Meanwhile,the paper put light on the sustainability of different cooling/lubrication strategies.The sustainability of machining aims to get the product with the best accuracy and surface quality,minimum energy consumption,low environmental impact,reasonable economy,and minimum effect on worker’s health.The paper revealed that despite some cooling/lubrication mediums like mineral oils and semisynthetic,afford sufficient lubrication or cooling,they have a significant negative impact on the environment and public health.On the other hand,emulsions can overcome environmental problems but the economy and the energy consumption during grinding are still a matter of concern.Biodegradable and vegetable oils are considered eco-friendly oils,but they suffer from a lack of thermal stability which affects their ability of efficiently cooling.Using the cooling medium with the lowest amount can achieve the goal of the economy but it may be reflected negatively on the machinability.Furthermore,cryogenic lubrication doesn’t provide sufficient lubrication to reduce friction and hence energy consumption.The research described in the paper is such a comprehensive compilation of knowledge regarding the machinability and machining performance under different cooling and lubrication systems that it will aid the next generation of scientists in identifying current advancements as well as potential future directions of research on ecological aspects of machining for sustainability.展开更多
The deformed microstructures of a TiNi shape memory alloy were investigated in present study to clarify the deformation mechanism.It is found that the stress-strain curve was divided into three stages based on the def...The deformed microstructures of a TiNi shape memory alloy were investigated in present study to clarify the deformation mechanism.It is found that the stress-strain curve was divided into three stages based on the deformation modes.The cause of martensitic stabilization effect was also interpreted by paying special attention to the deformed microstructures.Transmission electron microscopic examination revealed that at the early stage of deformation martensitic reorientation and compound twinning relieved some of the elastic strain energy stored in martensite,and this contributes to the martensitic stabilization effect.However,when deformation strain became larger,the density of dislocations increased correspondingly.Antiphase boundaries were also found.The degree of ordering was therefore decreased due to dislocations and antiphase boundaries.So disordering was another cause of martensitic stabilization effect.In the middle stage of deformation martensitic stabilization was attributed to the two reasons above.展开更多
文摘Rural economic development can differ intensely among municipalities within the same region. The economic activity disparity among them makes public policy actions difficult. It is possible to find highly efficient and globally competitive producers, as well as those producing for subsistence, in the same area. This disparity stands out the total productivity importance of the factors of production in the agricultural sector, especially the productivity of the land. The way the land is occupied in the rural area, namely crops, pastures, reforestation and other areas, can be indicative of the productivity of the land factor and the value of agricultural production. The products that compose the value of the agricultural production present different land occupation through their own productive characteristic. The main objective of this work was to measure the association between the production value of groups of agricultural products and the diversified uses of the rural area in the production of the municipalities in the state of Sao Paulo. In this research, 52 agricultural products produced in 2008 were used, grouped in five production value variables and other nine variables of the land use in production of the municipalities in Sao Paulo. The multivariate statistical technique of canonical correlation was used to measure the association between the product variables group of the production value with the land use group in agricultural activities. It was concluded that there is a strong correlation (94.3%) in the first pair of canonical variables, representing the production value and the land use, allowing groups of municipalities to be formed at different stages of development in agricultural production. It can be verified that 61.8% of the municipalities in the state were below the average in the production group and land use and that only 4.8% were above average for the production variables group and with values below the average in land use. The stages of agricultural development in the municipalities of Sao Paulo and the association between the production and use of the area can contribute to identify the direction of public policies to increase the productivity of the agricultural sector.
基金sponsored by the Science and Technology Program of Hubei Province,China(2022EHB020,2023BBB096)support provided by Centre of the Excellence in Production Research(XPRES)at KTH。
文摘In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life.
基金the aid of Research and Development Fund-Seed Money provided by Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology。
文摘The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.
文摘To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold forming sheet of the AZ31 alloy after being annealed under various conditions.The activities were focused on the fracture pattern,limit drawing ratio(LDR),deformation load,thickness distribution,anisotropic effect,as well as the influences of the annealing conditions and tool configuration on them.The results display that punch shoulder radius instead of die clearance,has much influence on the thickness distribution.The anisotropy is remarkable in cold working,which adversely impacts the LDR.The fracture often happens on the side wall at an angle to axis of the deformed specimen.The results also imply that the LDR for the material under present experimental conditions is 1.72,and annealing the material at 450 ℃ for 1 h may be preferable for the cold deep drawing.
基金partially supported by the Brazilian National Council for Scientific and Technological Development(CNPq Grant No.304903/2013-2)
文摘The problem of capacity shortage in some airports needs to be dealt with sustainable solutions including a more efficient use of the existing runway slots at the airports. The Collaborative Decision Making(CDM) is an important approach applied to Air Traffic Management(ATM)to achieve this efficient use of the slots allocation. Using the Matching approach for two-sided markets of Game theory, the Top Trading Cycle CDM(TTC-CDM) algorithm developed in this research is an extension of the CDM approach aggregating the Ground Delay Program(GDP)of the air sector. The paper compared the developed TTC-CDM model to the existing models such as the conventional Compression algorithm in CDM, the Trade Cycle algorithm and the Deferred Acceptance CDM(DA-CDM) model to evaluate the performance of the proposed model. Through a case study, the results show the effective application of TTC-CDM model to slot allocation in ATM and also presents the advantage of considering the preferences of airport managers beside ATC controllers and airlines in the decision processing.
文摘The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.
文摘NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance.
文摘The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and LevenbergeM arquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.
文摘Due to their hexagonal crystal structure,magnesium alloys have relatively low workability at room temperature.In this study,the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing,numerical modeling and microstructural analyses.Hot deformation tests are performed at temperatures of 250℃ to 400℃ under strain rates of 0.01 to 1.0 s^(−1).Transmission electron microscopy is used to reveal the presence of dynamic recrystallization(DRX),dynamic recovery(DRY),cracks and shear bands.To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy,the authors use Johnson–Cook damage model in a 3D finite element simulation.The optimal hot workability of magnesium alloy is found at a temperature(T)of 400℃ and strain rate(ε)of 0.01 s^(−1).Stability is found at a lower strain rate,and instability is found at a higher strain rate.
文摘The present research objective is to investigate the effect of boron nitride nanoparticles reinforcement on dry sliding wear behavior of pure Magnesium and magnesium nanocomposites.The fabricated nanocomposites contains varied percentages of boron nitride such as 0%(pure Mg),0.5%,1.5%and 2.5%were synthesized by using powder metallurgy technique and followed by a hot working process called hot extrusion.The pin on disk equipment was used for conducting the wear tests for traditional loads of 5 N,7 N and 10 N at different sliding speeds of 0.6,0.9 and 1.2 m/s against the steel disk at room temperature.For all traditional loads and sliding speeds,the changes in wear rate and friction co-efficient(μ)with respect to sliding distances were observed and analyzed.The wear characteristics are observed with the help of scanning electron microscopy under given test conditions.To investigate dominant wear mechanisms for various test conditions,the morphologies of all worn composites surfaces were analyzed.Final results show that,for all nanocomposites the wear level raises with respect to the sliding speeds and loads.Magnesium reinforced with 0.5%boron nitride shows lower wear rates and low friction coefficient values compare with magnesium reinforced with 1.5%boron nitride and 2.5%boron nitride nanocomposites.
文摘This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes thefeatures that make such materials difficult to grind. The possibilities of exerting a positive influence upon machining conditions,especially through the proper application of grinding fluids, are briefly presented. Both the precise methodologies for, and theresults of, the experimental tests carried out on flat surfaces are also detailed. The aim of these tests was to determine the influenceof the application of two types of grinding liquid (Ecocut Mikro Plus 82 and Biocut 3000) upon the grinding force values andsurface roughness of the machined workpieces made from three nickel alloys (Nickel 201, INCONEL~ alloy 600, and MONEL^alloy 400). An additional goal of the tests was to determine the influence of grinding wheel structure on the course and results ofthe machining process. The results indicate that the physical and chemical properties of Biocut 3000 enabled the most advanta-geous properties of the machined surface roughness, alongside a simultaneous increase in grinding power, when compared to theresults when applying Ecocut Mikro Plus 82. The results showed an almost inversely proportional dependence upon the specifictangential grinding force Ft' and arithmetic mean deviation of the surface profile Ra values, especially in cases of machining Nickel201 and INCONEL alloy 600. The original traverse grinding methodology used in the tests made it possible to assess the changesof the grinding conditions within the conventionally selected zones.
基金supported and funded from consultancy project of Bharath Heavy Electricals Limited, Tiruchirappalli,India
文摘Ni-Cr based nanostructured feedstock powder was prepared by mechanical milling technique involving repeated welding, fracturing, and re-welding of powder particles in a planetary ball mill. The milled nanocrystalline powders were used to coat carbon steel tubes using high velocity oxygen fuel(HVOF) thermal spraying process. The characterization of the feedstock powder and HVOF coated substrates was performed using optical microscope, X-ray diffractometer(XRD), scanning electron microscope(SEM), high resolution transmission electron microscope(HR-TEM), energy dispersive spectrometer(EDS) and microhardness tests. The coated and uncoated samples were subjected to different thermal cycles and characterized for their phase changes, metallurgical changes and microhardness variations. Ni-Cr nanostructured coated samples exhibited higher mechanical and metallurgical properties compared to their conventionally coated counter parts. The results showed that the nanostructured coating possessed a more uniform and denser microstructure than the conventional coating.
文摘The optimum friction welding (FW) parameters of duplex stainless steel (DSS) UNS $32205 joint was determined. The experiment was carried out as the central composite array of 30 experiments. The selected input parameters were friction pressure (F), upset pressure (U), speed (S) and burn-off length (B), and responses were hardness and ultimate tensile strength. To achieve the quality of the welded joint, the ultimate tensile strength and hardness were maximized, and response surface methodology (RSM) was applied to create separate regression equations of tensile strength and hardness. Intelligent optimization technique such as genetic algorithm was used to predict the Pareto optimal solutions. Depending upon the application, preferred suitable welding parameters were selected. It was inferred that the changing hardness and tensile strength of the friction welded joint influenced the upset pressure, friction Pressure and speed of rotation.
基金the support of Intelie Soucoes em Informáica LTDA
文摘In order to avoid mistakes and to save a great deal of time in analysis, an innovative methodology was developed that can analyze the well operations and rig characteristics involved to define the best emergency disconnect sequence (EDS) available. A solution was developed based on the characteristics of the rigs and blowout preventers (BOPs), and six variables were considered that directly affect the choice of EDS. All possible combinations of 64 scenarios were analyzed, and the priority of choice of the EDS was defined empirically. This paper presents an approach to EDS risk management and examples of exposure time (time without riser safety margin and shear capability) for the same well, which can be lowered from 13% to 0.1%. The impact of this reduction is related to the ability of the BOP to cut some of the heavy casings, in addition to improved availability of EDS modes. This implementation opened up many possibilities for the performance of risk exposure analysis, enabling comparison of several BOP configurations of contracted rigs and selection of the best options. This innovative approach allowed a better management of the rig schedules, prioritizing safety aspects and making it possible to allocate the fleet in a systematic way.
文摘The formability of bake hardened steel (thickness 0.82 mm), and the extra galvannealed IF steel (thickness 0.82 mm) have been studied. The suitability of the above steels for forming applications has been critically examined. The microstructure, tensile properties, and formability parameters of the above sheet metals were determined. The manufacturing process of the steels and the significance with reference to its formability were studied.
文摘This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding(MFSW)process.For MFSW,consumable tool of polyamide6(PA6)composite has been used for joining of acrylonitrile butadiene styrene(ABS)composites.The dissimilar thermoplastics were processed for maintaining a useful range of melt flow properties followed by preparation of feed stock filament for fused deposition modeling(FDM)process through screw extrusion.Finally,3D printed PA6 based consumable rapid tool(RT)was prepared for MFSW.The joints prepared were subjected to flexural,hardness,morphological and thermal testing.The study has suggested the that maximum mechanical strength was obtained for sample welded at 1400 r/min,50 mm/min transverse speed and 3 mm plunge depth,whereas the minimum mechanical strength was obtained for sample welded at 1000 r/min,30 mm/min transverse speed and 2 mm plunge depth.The results are also supported with thermal analysis and photomicrographs.
基金the management of Bharat Heavy Electricals Ltd., for funding this research programme
文摘Creep strength enhanced ferritic(CSEF) steels are used in advanced power plant systems for high temperature applications. P92(Cr–W–Mo–V)steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis(GRA).Bead on plate(BOP) trials were carried out using a 3.5 k W diffusion cooled slab CO_2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone(HAZ) width. Analysis of variance(ANOVA) has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 k W, welding speed of 1 m/min and focal plane at-4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
文摘AZ31B magnesium alloy and nano-composite were manufactured by hybrid casting process and hot extruded at 350 °C. The sliding wear behaviour of alloy and nano-composite was estimated at room temperature using the standard pin-on-disc wear test equipment. The tests were conducted under a normal load of 10 N at different sliding speeds ranging from 0.60 to 1.2 m/s for distance up to 2000 m. The wear mechanisms of the worn out surface were studied using SEM analysis. The influence of test parameters on wear rate of the pins was established using a linear regression model statistically. Compared with the AZ31B magnesium alloy, the nano-composite shows lower wear rates due to higher hardness improvement caused by the reinforcement. The wear mechanism appears to be a mix-up of ploughing, rows of furrows, delamination and oxidation.
基金funded by the Natural Science Foundation of China(Nos.52005174,52275421,51875192)Hunan Provincial Science Fund for Distinguished Young Scholars(No.2022JJ10010)+2 种基金Key Research and Development Program of Hunan Province(No.2022WK2003),the Natural Science Foundation of Hunan Province(Nos.2021JJ40064,2020JJ4193)the Natural Science Foundation of Changsha(No.kq2014048)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA25020317).The authors acknowledge the financial support.
文摘Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high level of productivity and sustainability is a substantive issue.The recent paper outlines the lubrication and cooling technologies and mediums that are used for grinding.Furthermore,it provides a basis for a critical assessment of the different lubrication/cooling techniques in terms of machining outputs,environmental impact,hygiene effect,etc.Meanwhile,the paper put light on the sustainability of different cooling/lubrication strategies.The sustainability of machining aims to get the product with the best accuracy and surface quality,minimum energy consumption,low environmental impact,reasonable economy,and minimum effect on worker’s health.The paper revealed that despite some cooling/lubrication mediums like mineral oils and semisynthetic,afford sufficient lubrication or cooling,they have a significant negative impact on the environment and public health.On the other hand,emulsions can overcome environmental problems but the economy and the energy consumption during grinding are still a matter of concern.Biodegradable and vegetable oils are considered eco-friendly oils,but they suffer from a lack of thermal stability which affects their ability of efficiently cooling.Using the cooling medium with the lowest amount can achieve the goal of the economy but it may be reflected negatively on the machinability.Furthermore,cryogenic lubrication doesn’t provide sufficient lubrication to reduce friction and hence energy consumption.The research described in the paper is such a comprehensive compilation of knowledge regarding the machinability and machining performance under different cooling and lubrication systems that it will aid the next generation of scientists in identifying current advancements as well as potential future directions of research on ecological aspects of machining for sustainability.
文摘The deformed microstructures of a TiNi shape memory alloy were investigated in present study to clarify the deformation mechanism.It is found that the stress-strain curve was divided into three stages based on the deformation modes.The cause of martensitic stabilization effect was also interpreted by paying special attention to the deformed microstructures.Transmission electron microscopic examination revealed that at the early stage of deformation martensitic reorientation and compound twinning relieved some of the elastic strain energy stored in martensite,and this contributes to the martensitic stabilization effect.However,when deformation strain became larger,the density of dislocations increased correspondingly.Antiphase boundaries were also found.The degree of ordering was therefore decreased due to dislocations and antiphase boundaries.So disordering was another cause of martensitic stabilization effect.In the middle stage of deformation martensitic stabilization was attributed to the two reasons above.