In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i...In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life.展开更多
An individual's mental health influences their capacity to think effectively,feel emotionally stable,and perform daily activities.As mental health concerns become more prevalent worldwide,new awareness and diagnos...An individual's mental health influences their capacity to think effectively,feel emotionally stable,and perform daily activities.As mental health concerns become more prevalent worldwide,new awareness and diagnostic and treatment tactics are needed.Digital tools and technology are helping solve these problems by providing scalable,tailored solutions for large populations.This detailed review examines mental health‐promoting internet tools.Smartphone applications,web‐based therapy systems,wearable tech,artificial intelligence‐powered resources,and virtual reality(VR)technologies were evaluated for efficacy and side effects.PubMed,PsycINFO,Scopus,IEEE Xplore,and Google Scholar were carefully searched.Search terms included“digital mental health tools,”“online therapy,”and“AI in mental health.”Randomized controlled trials,cohort studies,cross‐sectional studies,systematic reviews,and meta‐analyses of digital technology and mental health were included from among the literature published after 2010.Cognitive behavioral therapy methods,mood monitoring,and mindfulness exercises are among the numerous features of smartphone applications that have been demonstrated to mitigate symptoms of anxiety,depression,and tension.Online therapy platforms let marginalized individuals obtain therapy remotely.Wearable technology may detect heart rate,blood pressure,and sleep length,which may reveal mental health difficulties.Chatbots employ machine learning algorithms and natural language processing to deliver customized support and show promise for quick intervention.Exposure therapy for anxiety and trauma is increasingly using virtual reality environments.Although digital mental health therapies face challenges in relation to data privacy,limited long‐term efficacy,and technological inequality,digital technologies are modernizing mental healthcare.By offering inexpensive and effective alternatives to traditional therapies,digital technologies may help healthcare systems meet the growing demand for mental health services and overall well‐being.展开更多
Subclinical mastitis (SCM) is one of the major factors affecting the productivity of dairy cattle all over the world. This study established the burden of SCM and determined the potent antibacterial formulation for co...Subclinical mastitis (SCM) is one of the major factors affecting the productivity of dairy cattle all over the world. This study established the burden of SCM and determined the potent antibacterial formulation for control of Staphylococcus aureus (SA) related SCM in selected dairy cattle farms in Kiboga district. A total of 124 dairy cattle from 12 farms were screened for SCM using California Mastitis Test (CMT) from Kiboga Town-Council, Kapeke and Lwamata sub-counties. The offending bacteria were cultured and the antibiogram of SA was carried out using antibacterial susceptibility by the modified Kirby-Bauer disc diffusion method. Additional qualitative data on the factors that predispose cows to SCM was obtained through questionnaires and observation of milking Practice. The prevalence of SCM in the three sub-counties was 87.9%. Over 70% of the dairy cattle screened for SCM had more than 2 udder quarters affected. The majority (90%) of SCM was caused by mixed bacterial infections: Coagulase negative staphylococci (64.4%) and SA (16.6%) being the most prevalent. All the farmers (100%) lacked knowledge on SCM, udder towels, teat dipping and drug cow therapy. Overall, 71.4% of SA isolated was multi-drug resistant. There was a high level of resistance against penicillin (100%), neomycin (85.7%) and tetracycline (71.4%). In contrast, all the above isolates were susceptible to Trimethoprim-Sulphamethazole. In conclusion, the high burden of SCM and emergence of multidrug resistant SA are one of the constraints to dairy production in Kiboga district. Therefore, sensitization of dairy farmers in Kiboga district on proper hygienic, appropriate milking techniques and dry cow therapy using potentiated sulfonamide intra-mammary preparations are highly recommended in SA associated SCM.展开更多
The race to develop the next generation of wireless networks,known as Sixth Generation(6G)wireless,which will be operational in 2030,has already begun.To realize its full potential over the next decade,6G will undoubt...The race to develop the next generation of wireless networks,known as Sixth Generation(6G)wireless,which will be operational in 2030,has already begun.To realize its full potential over the next decade,6G will undoubtedly necessitate additional improvements that integrate existing solutions with cutting-edge ones.However,the studies about 6G are mainly limited and scattered,whereas no bibliometric study covers the 6G field.Thus,this study aims to review,examine,and summarize existing studies and research activities in 6G.This study has examined the Scopus database through a bibliometric analysis of more than 1,000 papers published between 2017 and 2021.Then,we applied the bibliometric analysis methods by including(1)document type,(2)subject area,(3)author,and(4)country of publication.The study’s results reflect the research 6G community’s trends,highlight important research challenges,and elucidate potential directions for future research in this interesting area.展开更多
Utilization of magnetically treated water has been investigated and applied in many countries such as Russia,Australia,Israel,China and Japan.Studies have shown that the magnetic field is used as a safe alternative to...Utilization of magnetically treated water has been investigated and applied in many countries such as Russia,Australia,Israel,China and Japan.Studies have shown that the magnetic field is used as a safe alternative to improve plant growth and development.Although the properties of magnetically treated water have received a great deal of interest in recent years,there are no studies conducted in Moroccan agricultural conditions.The present study aimed at gaining more insight on the effect of magnetically treated irrigation water(MTIW)in the northwest region of Morocco,on the yield of strawberry plants(Fragaria×ananassa Duch.cv.Camarosa)and its components.The experiments were conducted in situ,during two crop seasons(2011-2012 and 2013-2014).The results confirm that physical treatment of irrigation water by a static magnetic field improves the yield and quality of strawberry fruits.The percentages of increase in number of flowers,number of fruits,fruit yield and quality of export production per 100 plants were 27.4%,30.9%,34.8%,24.3%,respectively,compared with normal irrigation water(average over both crop seasons).These results suggest that irrigation with MTIW improves the production as well as the quality of the strawberry fruit,thus water use efficiency was enhanced.Therefore,the MTIW can be considered as a promising technique for improvement but extensive research is still required.展开更多
Rural economic development can differ intensely among municipalities within the same region. The economic activity disparity among them makes public policy actions difficult. It is possible to find highly efficient an...Rural economic development can differ intensely among municipalities within the same region. The economic activity disparity among them makes public policy actions difficult. It is possible to find highly efficient and globally competitive producers, as well as those producing for subsistence, in the same area. This disparity stands out the total productivity importance of the factors of production in the agricultural sector, especially the productivity of the land. The way the land is occupied in the rural area, namely crops, pastures, reforestation and other areas, can be indicative of the productivity of the land factor and the value of agricultural production. The products that compose the value of the agricultural production present different land occupation through their own productive characteristic. The main objective of this work was to measure the association between the production value of groups of agricultural products and the diversified uses of the rural area in the production of the municipalities in the state of Sao Paulo. In this research, 52 agricultural products produced in 2008 were used, grouped in five production value variables and other nine variables of the land use in production of the municipalities in Sao Paulo. The multivariate statistical technique of canonical correlation was used to measure the association between the product variables group of the production value with the land use group in agricultural activities. It was concluded that there is a strong correlation (94.3%) in the first pair of canonical variables, representing the production value and the land use, allowing groups of municipalities to be formed at different stages of development in agricultural production. It can be verified that 61.8% of the municipalities in the state were below the average in the production group and land use and that only 4.8% were above average for the production variables group and with values below the average in land use. The stages of agricultural development in the municipalities of Sao Paulo and the association between the production and use of the area can contribute to identify the direction of public policies to increase the productivity of the agricultural sector.展开更多
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use...We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.展开更多
Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared t...Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.展开更多
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote...We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.展开更多
This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Pro...This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.展开更多
Magnesium is one of the largely available elements in the earth’s crust. It has a low structural density with high specific strength. This unique material property has forced an increase in the use of magnesium and i...Magnesium is one of the largely available elements in the earth’s crust. It has a low structural density with high specific strength. This unique material property has forced an increase in the use of magnesium and its alloys in various applications pertaining to industrial sector,automobiles, aerospace and biomedical. Since magnesium is a highly reactive metal, it is prone to higher rate of corrosion as compared to its counterparts. Thus, it is essential to analyze the corrosion behavior of magnesium and its alloys in its applications. An appropriate process is to be followed in the design and development of magnesium alloys which overcome the limitations of magnesium and enhance the desired material properties in accordance to their applications. This review paper summarizes the importance of magnesium and its material properties. The influence of various alloying elements on the mechanical properties of magnesium is reviewed. The broad classification of Mg alloys and their behavioral trends are detailed. The corrosion behavior of magnesium and the influence of corrosion products on the material characteristics of magnesium, in aqueous medium, are discussed. The manufacturing techniques of magnesium alloys along with the secondary techniques are also covered. The various applications and the limitations of magnesium in these applications are covered. A complete section is dedicated towards detailing the recent trends of magnesium(Mg) alloys, i.e., the biodegradable nature and applications of Mg alloys. The influence of biocorrosion on Mg alloys and techniques to overcome it have been deliberated. This paper provides a thorough review on recent developments of magnesium with respect to engineering applications.展开更多
Cubic boron nitride particles coated by titanium nitride (TiN/cBN) as well as diamond particles coated by titanium carbide (TiC/diamond) were prepared by Ti molten salt deposition followed by heat-treatment process. c...Cubic boron nitride particles coated by titanium nitride (TiN/cBN) as well as diamond particles coated by titanium carbide (TiC/diamond) were prepared by Ti molten salt deposition followed by heat-treatment process. cBN or diamond particles were mixed separately with Ti powders and molten salts (KCl, NaCl and K<sub>2</sub>TiF<sub>6</sub>). The mixture was heated at 900 °C under argon atmosphere. The produced particles were heat-treated under hydrogen at 1000 °C. The morphologies and chemical compositions of the produced particles were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and focused ion beam (FIB). The results show that the cBN and the diamond particles are coated by nano-sized Ti layers. By heat-treatment of the Ti/cBN and TiC/diamond coated particles under hydrogen atmosphere, the deposited Ti layers were interacted by the in-situ transformation reaction with the surfaces of cBN and diamond particles and converted to titanium compounds (TiN and TiC), respectively.展开更多
The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr s...The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr successfully modified the platelet and flake-likeβ-Al-5FeSi phases (β-compound) into the fibrousα-Al-8Fe-2Si (α-compound).The additions of Sr and Sr/Mg were less effective to modify theβ-compound into theα-compound,while the eutectic Si was fully modified into the fibrous morphology.A small secondary dendrite arm spacing (DAS) was found in the Sr-added,Cr-added and Sr/Cr-added alloys,especially in a steel mold.The Sr,Sr/Cr and Sr/Mg combined additions modify the eutectic Si simultaneously.A sludge phase was found in the addition of Cr-added,Sr/Cr-added and Mg-added alloys,especially in the graphite mold casting.The volume fraction ofβ-compounds was decreased by the addition of various modifying elements. The Cr and Sr/Cr combined additions are very effective to modify theβ-compound for the recycled Al-Si-Fe based alloys.展开更多
AIM: To perform plasma free amino acid (PFAA) profiling of esophageal squamous cell carcinoma (ESCC) patients at different pathological stages and healthy subjects.
To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold for...To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold forming sheet of the AZ31 alloy after being annealed under various conditions.The activities were focused on the fracture pattern,limit drawing ratio(LDR),deformation load,thickness distribution,anisotropic effect,as well as the influences of the annealing conditions and tool configuration on them.The results display that punch shoulder radius instead of die clearance,has much influence on the thickness distribution.The anisotropy is remarkable in cold working,which adversely impacts the LDR.The fracture often happens on the side wall at an angle to axis of the deformed specimen.The results also imply that the LDR for the material under present experimental conditions is 1.72,and annealing the material at 450 ℃ for 1 h may be preferable for the cold deep drawing.展开更多
The problem of capacity shortage in some airports needs to be dealt with sustainable solutions including a more efficient use of the existing runway slots at the airports. The Collaborative Decision Making(CDM) is a...The problem of capacity shortage in some airports needs to be dealt with sustainable solutions including a more efficient use of the existing runway slots at the airports. The Collaborative Decision Making(CDM) is an important approach applied to Air Traffic Management(ATM)to achieve this efficient use of the slots allocation. Using the Matching approach for two-sided markets of Game theory, the Top Trading Cycle CDM(TTC-CDM) algorithm developed in this research is an extension of the CDM approach aggregating the Ground Delay Program(GDP)of the air sector. The paper compared the developed TTC-CDM model to the existing models such as the conventional Compression algorithm in CDM, the Trade Cycle algorithm and the Deferred Acceptance CDM(DA-CDM) model to evaluate the performance of the proposed model. Through a case study, the results show the effective application of TTC-CDM model to slot allocation in ATM and also presents the advantage of considering the preferences of airport managers beside ATC controllers and airlines in the decision processing.展开更多
NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperat...NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance.展开更多
The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.%...The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.展开更多
By using aluminum alloys,the properties of the material in sheet hydroforming were obtained based on the identification of parameters for constitutive models by inverse modeling in which the friction coefficients were...By using aluminum alloys,the properties of the material in sheet hydroforming were obtained based on the identification of parameters for constitutive models by inverse modeling in which the friction coefficients were also considered in 2D and 3D simulations.With consideration of identified simulation parameters by inverse modeling,some key process parameters including tool dimensions and pre-bulging on the forming processes in sheet hydroforming were investigated and optimized.Based on the optimized parameters,the sheet hydroforming process can be analyzed more accurately to improve the robust design.It proves that the results from simulation based on the identified parameters are in good agreement with those from experiments.展开更多
The effects of the casting factors such as nozzle size to pour the melt,nozzle height,tilt of the slope and slope length,of the cooling slope on the process to make semisolid slurry were investigated.The results show ...The effects of the casting factors such as nozzle size to pour the melt,nozzle height,tilt of the slope and slope length,of the cooling slope on the process to make semisolid slurry were investigated.The results show that these factors affect the behaviors of the semisolid slurry on the cooling slope.The tilt of the slope is the factor that has major influence on the behavior of the semisolid slurry.The cooling roll is developed from the result of the research of the cooling slope.The rotating cooling roll can improve the sticking of the semisolid slurry on the substrate and it is suitable for making the semisolid slurry.展开更多
基金sponsored by the Science and Technology Program of Hubei Province,China(2022EHB020,2023BBB096)support provided by Centre of the Excellence in Production Research(XPRES)at KTH。
文摘In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life.
文摘An individual's mental health influences their capacity to think effectively,feel emotionally stable,and perform daily activities.As mental health concerns become more prevalent worldwide,new awareness and diagnostic and treatment tactics are needed.Digital tools and technology are helping solve these problems by providing scalable,tailored solutions for large populations.This detailed review examines mental health‐promoting internet tools.Smartphone applications,web‐based therapy systems,wearable tech,artificial intelligence‐powered resources,and virtual reality(VR)technologies were evaluated for efficacy and side effects.PubMed,PsycINFO,Scopus,IEEE Xplore,and Google Scholar were carefully searched.Search terms included“digital mental health tools,”“online therapy,”and“AI in mental health.”Randomized controlled trials,cohort studies,cross‐sectional studies,systematic reviews,and meta‐analyses of digital technology and mental health were included from among the literature published after 2010.Cognitive behavioral therapy methods,mood monitoring,and mindfulness exercises are among the numerous features of smartphone applications that have been demonstrated to mitigate symptoms of anxiety,depression,and tension.Online therapy platforms let marginalized individuals obtain therapy remotely.Wearable technology may detect heart rate,blood pressure,and sleep length,which may reveal mental health difficulties.Chatbots employ machine learning algorithms and natural language processing to deliver customized support and show promise for quick intervention.Exposure therapy for anxiety and trauma is increasingly using virtual reality environments.Although digital mental health therapies face challenges in relation to data privacy,limited long‐term efficacy,and technological inequality,digital technologies are modernizing mental healthcare.By offering inexpensive and effective alternatives to traditional therapies,digital technologies may help healthcare systems meet the growing demand for mental health services and overall well‐being.
文摘Subclinical mastitis (SCM) is one of the major factors affecting the productivity of dairy cattle all over the world. This study established the burden of SCM and determined the potent antibacterial formulation for control of Staphylococcus aureus (SA) related SCM in selected dairy cattle farms in Kiboga district. A total of 124 dairy cattle from 12 farms were screened for SCM using California Mastitis Test (CMT) from Kiboga Town-Council, Kapeke and Lwamata sub-counties. The offending bacteria were cultured and the antibiogram of SA was carried out using antibacterial susceptibility by the modified Kirby-Bauer disc diffusion method. Additional qualitative data on the factors that predispose cows to SCM was obtained through questionnaires and observation of milking Practice. The prevalence of SCM in the three sub-counties was 87.9%. Over 70% of the dairy cattle screened for SCM had more than 2 udder quarters affected. The majority (90%) of SCM was caused by mixed bacterial infections: Coagulase negative staphylococci (64.4%) and SA (16.6%) being the most prevalent. All the farmers (100%) lacked knowledge on SCM, udder towels, teat dipping and drug cow therapy. Overall, 71.4% of SA isolated was multi-drug resistant. There was a high level of resistance against penicillin (100%), neomycin (85.7%) and tetracycline (71.4%). In contrast, all the above isolates were susceptible to Trimethoprim-Sulphamethazole. In conclusion, the high burden of SCM and emergence of multidrug resistant SA are one of the constraints to dairy production in Kiboga district. Therefore, sensitization of dairy farmers in Kiboga district on proper hygienic, appropriate milking techniques and dry cow therapy using potentiated sulfonamide intra-mammary preparations are highly recommended in SA associated SCM.
基金The authors received Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA)grant under Internal Research Grant with Grant Number PDU223209.Author received grant is:Ahmad Firdaus Website of the sponsor:https://www.ump.edu.my/en.
文摘The race to develop the next generation of wireless networks,known as Sixth Generation(6G)wireless,which will be operational in 2030,has already begun.To realize its full potential over the next decade,6G will undoubtedly necessitate additional improvements that integrate existing solutions with cutting-edge ones.However,the studies about 6G are mainly limited and scattered,whereas no bibliometric study covers the 6G field.Thus,this study aims to review,examine,and summarize existing studies and research activities in 6G.This study has examined the Scopus database through a bibliometric analysis of more than 1,000 papers published between 2017 and 2021.Then,we applied the bibliometric analysis methods by including(1)document type,(2)subject area,(3)author,and(4)country of publication.The study’s results reflect the research 6G community’s trends,highlight important research challenges,and elucidate potential directions for future research in this interesting area.
文摘Utilization of magnetically treated water has been investigated and applied in many countries such as Russia,Australia,Israel,China and Japan.Studies have shown that the magnetic field is used as a safe alternative to improve plant growth and development.Although the properties of magnetically treated water have received a great deal of interest in recent years,there are no studies conducted in Moroccan agricultural conditions.The present study aimed at gaining more insight on the effect of magnetically treated irrigation water(MTIW)in the northwest region of Morocco,on the yield of strawberry plants(Fragaria×ananassa Duch.cv.Camarosa)and its components.The experiments were conducted in situ,during two crop seasons(2011-2012 and 2013-2014).The results confirm that physical treatment of irrigation water by a static magnetic field improves the yield and quality of strawberry fruits.The percentages of increase in number of flowers,number of fruits,fruit yield and quality of export production per 100 plants were 27.4%,30.9%,34.8%,24.3%,respectively,compared with normal irrigation water(average over both crop seasons).These results suggest that irrigation with MTIW improves the production as well as the quality of the strawberry fruit,thus water use efficiency was enhanced.Therefore,the MTIW can be considered as a promising technique for improvement but extensive research is still required.
文摘Rural economic development can differ intensely among municipalities within the same region. The economic activity disparity among them makes public policy actions difficult. It is possible to find highly efficient and globally competitive producers, as well as those producing for subsistence, in the same area. This disparity stands out the total productivity importance of the factors of production in the agricultural sector, especially the productivity of the land. The way the land is occupied in the rural area, namely crops, pastures, reforestation and other areas, can be indicative of the productivity of the land factor and the value of agricultural production. The products that compose the value of the agricultural production present different land occupation through their own productive characteristic. The main objective of this work was to measure the association between the production value of groups of agricultural products and the diversified uses of the rural area in the production of the municipalities in the state of Sao Paulo. In this research, 52 agricultural products produced in 2008 were used, grouped in five production value variables and other nine variables of the land use in production of the municipalities in Sao Paulo. The multivariate statistical technique of canonical correlation was used to measure the association between the product variables group of the production value with the land use group in agricultural activities. It was concluded that there is a strong correlation (94.3%) in the first pair of canonical variables, representing the production value and the land use, allowing groups of municipalities to be formed at different stages of development in agricultural production. It can be verified that 61.8% of the municipalities in the state were below the average in the production group and land use and that only 4.8% were above average for the production variables group and with values below the average in land use. The stages of agricultural development in the municipalities of Sao Paulo and the association between the production and use of the area can contribute to identify the direction of public policies to increase the productivity of the agricultural sector.
文摘We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response.
基金support by the project entitled"Interdisciplinarity in Materials Science and Joining Technologies"from the Department of Production Engineering,Faculty of Technical Sciences Novi Sad,Serbia。
文摘Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.
基金This research is based on results obtained from Project JPNP07015the New Energy and Industrial Technology Development Organization(NEDO)and is also partly supported by the Japan Society for the Promotion of Science KAKENHI Program(Grant No.21K18795)。
文摘We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array.
文摘This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment.
文摘Magnesium is one of the largely available elements in the earth’s crust. It has a low structural density with high specific strength. This unique material property has forced an increase in the use of magnesium and its alloys in various applications pertaining to industrial sector,automobiles, aerospace and biomedical. Since magnesium is a highly reactive metal, it is prone to higher rate of corrosion as compared to its counterparts. Thus, it is essential to analyze the corrosion behavior of magnesium and its alloys in its applications. An appropriate process is to be followed in the design and development of magnesium alloys which overcome the limitations of magnesium and enhance the desired material properties in accordance to their applications. This review paper summarizes the importance of magnesium and its material properties. The influence of various alloying elements on the mechanical properties of magnesium is reviewed. The broad classification of Mg alloys and their behavioral trends are detailed. The corrosion behavior of magnesium and the influence of corrosion products on the material characteristics of magnesium, in aqueous medium, are discussed. The manufacturing techniques of magnesium alloys along with the secondary techniques are also covered. The various applications and the limitations of magnesium in these applications are covered. A complete section is dedicated towards detailing the recent trends of magnesium(Mg) alloys, i.e., the biodegradable nature and applications of Mg alloys. The influence of biocorrosion on Mg alloys and techniques to overcome it have been deliberated. This paper provides a thorough review on recent developments of magnesium with respect to engineering applications.
文摘Cubic boron nitride particles coated by titanium nitride (TiN/cBN) as well as diamond particles coated by titanium carbide (TiC/diamond) were prepared by Ti molten salt deposition followed by heat-treatment process. cBN or diamond particles were mixed separately with Ti powders and molten salts (KCl, NaCl and K<sub>2</sub>TiF<sub>6</sub>). The mixture was heated at 900 °C under argon atmosphere. The produced particles were heat-treated under hydrogen at 1000 °C. The morphologies and chemical compositions of the produced particles were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and focused ion beam (FIB). The results show that the cBN and the diamond particles are coated by nano-sized Ti layers. By heat-treatment of the Ti/cBN and TiC/diamond coated particles under hydrogen atmosphere, the deposited Ti layers were interacted by the in-situ transformation reaction with the surfaces of cBN and diamond particles and converted to titanium compounds (TiN and TiC), respectively.
文摘The effects of Sr,Mg,Cr,Sr/Mg and Sr/Cr combined additions on the Fe-containing intermetallic phase in a recycled Al-Si-Fe cast alloy are investigated.The experimental results show that the additions of Cr and Sr/Cr successfully modified the platelet and flake-likeβ-Al-5FeSi phases (β-compound) into the fibrousα-Al-8Fe-2Si (α-compound).The additions of Sr and Sr/Mg were less effective to modify theβ-compound into theα-compound,while the eutectic Si was fully modified into the fibrous morphology.A small secondary dendrite arm spacing (DAS) was found in the Sr-added,Cr-added and Sr/Cr-added alloys,especially in a steel mold.The Sr,Sr/Cr and Sr/Mg combined additions modify the eutectic Si simultaneously.A sludge phase was found in the addition of Cr-added,Sr/Cr-added and Mg-added alloys,especially in the graphite mold casting.The volume fraction ofβ-compounds was decreased by the addition of various modifying elements. The Cr and Sr/Cr combined additions are very effective to modify theβ-compound for the recycled Al-Si-Fe based alloys.
基金Supported by National Natural Science Foundation of China,Grant No.81360356Scientific Research Foundation of Xinjiang Medical University,Grant No.XJC201221
文摘AIM: To perform plasma free amino acid (PFAA) profiling of esophageal squamous cell carcinoma (ESCC) patients at different pathological stages and healthy subjects.
文摘To investigate how the popular magnesium alloy AZ31 sheet(aluminum 3%,zinc 1%)behaves in cold working,deep drawing experiments at room temperature,along with finite element(FE)simulation,were performed on the cold forming sheet of the AZ31 alloy after being annealed under various conditions.The activities were focused on the fracture pattern,limit drawing ratio(LDR),deformation load,thickness distribution,anisotropic effect,as well as the influences of the annealing conditions and tool configuration on them.The results display that punch shoulder radius instead of die clearance,has much influence on the thickness distribution.The anisotropy is remarkable in cold working,which adversely impacts the LDR.The fracture often happens on the side wall at an angle to axis of the deformed specimen.The results also imply that the LDR for the material under present experimental conditions is 1.72,and annealing the material at 450 ℃ for 1 h may be preferable for the cold deep drawing.
基金partially supported by the Brazilian National Council for Scientific and Technological Development(CNPq Grant No.304903/2013-2)
文摘The problem of capacity shortage in some airports needs to be dealt with sustainable solutions including a more efficient use of the existing runway slots at the airports. The Collaborative Decision Making(CDM) is an important approach applied to Air Traffic Management(ATM)to achieve this efficient use of the slots allocation. Using the Matching approach for two-sided markets of Game theory, the Top Trading Cycle CDM(TTC-CDM) algorithm developed in this research is an extension of the CDM approach aggregating the Ground Delay Program(GDP)of the air sector. The paper compared the developed TTC-CDM model to the existing models such as the conventional Compression algorithm in CDM, the Trade Cycle algorithm and the Deferred Acceptance CDM(DA-CDM) model to evaluate the performance of the proposed model. Through a case study, the results show the effective application of TTC-CDM model to slot allocation in ATM and also presents the advantage of considering the preferences of airport managers beside ATC controllers and airlines in the decision processing.
文摘NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance.
文摘The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization.
基金Project(9901351) supported by the Hydromechanical Deep Drawing without a Draw DieProject(1057001) supported by the National Natural Science Foundation of China
文摘By using aluminum alloys,the properties of the material in sheet hydroforming were obtained based on the identification of parameters for constitutive models by inverse modeling in which the friction coefficients were also considered in 2D and 3D simulations.With consideration of identified simulation parameters by inverse modeling,some key process parameters including tool dimensions and pre-bulging on the forming processes in sheet hydroforming were investigated and optimized.Based on the optimized parameters,the sheet hydroforming process can be analyzed more accurately to improve the robust design.It proves that the results from simulation based on the identified parameters are in good agreement with those from experiments.
文摘The effects of the casting factors such as nozzle size to pour the melt,nozzle height,tilt of the slope and slope length,of the cooling slope on the process to make semisolid slurry were investigated.The results show that these factors affect the behaviors of the semisolid slurry on the cooling slope.The tilt of the slope is the factor that has major influence on the behavior of the semisolid slurry.The cooling roll is developed from the result of the research of the cooling slope.The rotating cooling roll can improve the sticking of the semisolid slurry on the substrate and it is suitable for making the semisolid slurry.