Collagenase was isolated from fish waste (a mixture of haddock, herring, ground fish and flounder) using a Tris-buffer system. The proteins in the crude extract were precipitated using ammonium sulfate (40% - 80%) and...Collagenase was isolated from fish waste (a mixture of haddock, herring, ground fish and flounder) using a Tris-buffer system. The proteins in the crude extract were precipitated using ammonium sulfate (40% - 80%) and purified with gel-filtration chromatography using Sephadex G-100. The results showed that the collagenase enzyme was produced as a latent enzyme and was activated with bovine trypsin and potassium thiocyanate (KSCN). The enzyme activity was affected by pH and temperature. Optimal enzyme activities were found at 35?C and a pH of 7.5 when insoluble collagene type I was used as substrate and the liberated amino acids were measured in relation to L-leucine in the presence of ninhydrin. The enzyme activity was completely inhibited by the action of ethylenediaminetetraacetic acid (EDTA) suggesting that the collagenase enzyme isolated from the fish waste is a metalloproteinase enzyme requiring metal ions for enzyme activity. Dialysis against KSCN decreased the enzyme total activity and increased its specific activity. Sodium dodecyl sulphate polyacryla-mide gel electrophoresis (SDS-PAGE) indicated that the purified procollagenase enzyme have only one band at molecular weight of 50 kilodaltons (kDa). When the enzyme was cleaved with trypsin, it was found to consist of two subunits: a large unit with a molecular weight of 50 kDa and a small unit with a molecular weight of 10 kDa.展开更多
Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is inv...Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is investigated and compared to a new generation of shape memory alloys, i.e., 60NiTi. Only limited amount of work has been done to investigate the dependency of superelasticity on loading rate of TiNi under localized compressive loads, but much work is directed towards understanding the effect of strain rate on tensile properties. Understanding the superelastic behavior helps to employ superelastic alloys in applications where high impact loading is expected as in bearings and gears. In the present study, it is found that dent resistance of Ti-Ni alloy is not significantly affected by loading rate (within the employed loading conditions). It has also been found that new-generation 60NiTi alloy exhibits superior wear and dent resistance, as well as higher hardness compared to equiatomic TiNi.展开更多
The reactivity between charged Li(Li_(0.115)Mn_(0.529)Ni_(0.339)Al_(0.017))O_(2)(Li-rich),single crystal Li(Ni_(0.8)Mn_(0.1)Co_(0.1))O_(2)(SC-NMC811),LiFePO_(4)(LFP) and LiMn_(0.8)Fe_(0.2)PO_(4)(LMFP) positive electro...The reactivity between charged Li(Li_(0.115)Mn_(0.529)Ni_(0.339)Al_(0.017))O_(2)(Li-rich),single crystal Li(Ni_(0.8)Mn_(0.1)Co_(0.1))O_(2)(SC-NMC811),LiFePO_(4)(LFP) and LiMn_(0.8)Fe_(0.2)PO_(4)(LMFP) positive electrodes at different states of charge(SOCs) and traditional carbonate-based electrolyte at elevated temperatures is systematically studied using accelerating rate calorimetry(ARC).The results show that the SOC greatly affects the thermal stability of the Li-rich and SC-NMC811 when traditional carbonate-based electrolyte is used.Although an increase in the SOC increases the energy density of lithium-ion cells,it also increases the reactivity between charged Li-rich and SC-NMC811 samples with electrolyte at elevated temperatures.In comparison with SC-NMC811,the Li-rich samples are much more stable at elevated temperatures,and the latter have higher specific capacity.SC-NMC811 samples are less reactive than traditional polycrystalline NMC811.Both LFP and LMFP samples show excellent thermal stability at elevated temperatures.The substitution of Fe by Mn in the olivine series positive materials does not impact the reactivity with electrolyte.展开更多
Due to their light weight, high corrosion resistance and good heat conductivity, aluminium alloys are used in many industries today. They are suitable for manufacturing many automotive components such as clutch housin...Due to their light weight, high corrosion resistance and good heat conductivity, aluminium alloys are used in many industries today. They are suitable for manufacturing many automotive components such as clutch housings. These alloys can be fabricated by powder metallurgy and casting methods, in which porosity is a common feature. The presence of pores is responsible for reducing their strength, ductility and wear resistance. The present study aims to establish an understanding of the tribological behavior of high pressure die cast Al A380M and powder metallurgy synthesized Al 6061. In this study, dry sliding wear behavior of Al A380M and Al 6061 alloys was investigated under low loads (1.5 N – 5 N) against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration and frequency of 10 Hz. Wear mechanisms were studied through microscopic examination of the wear tracks. This study revealed that due to combined effect of real area of contact and subsurface cracking, wear rate increased with increasing porosity content. The difference in friction and wear behavior between received Al A380M and Al 6061 is attributed to their hardness differences.展开更多
Due to light weight, high specific strength, high corrosion resistance and good heat transfer ability, aluminium alloys are becoming attractive for critical structural applications. These alloys can be manufactured us...Due to light weight, high specific strength, high corrosion resistance and good heat transfer ability, aluminium alloys are becoming attractive for critical structural applications. These alloys can be manufactured using powder metallurgy techniques in which porosity is a common characteristic. The presence of pores is responsible for decreasing effective load bearing cross sectional area and inducing stress concentration sites for strain localization and damage, decreasing both strength and ductility. The present study aims to establish a better understanding of the relationship between surface porosity and corresponding wear behavior. In this study, porous specimens were produced using powder metallurgy technique and the extent of wear damage and the type of wear was investigated under low load range of 1.5 - 5 N against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration and frequency of 10 Hz. Scanning electron microscopy of the wear tracks and wear debris was carried out to understand wear mechanisms. This study revealed that due to combined effect of high stress intensity and subsurface cracking, wear rate increases with increasing porosity content. The friction and wear behavior of pure Al and Al 6061 as a function of porosity content can be attributed to their hardness and corresponding wear mechanism.展开更多
High-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C ceramics,with different contents(0,5,10,and 20 vol.%)of Si C whiskers(SiCw),were fabricated by spark plasma sintering using raw powders synthesized via carbother...High-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C ceramics,with different contents(0,5,10,and 20 vol.%)of Si C whiskers(SiCw),were fabricated by spark plasma sintering using raw powders synthesized via carbothermal reduction.The application of a uniaxial compaction force led to texture development of the SiCw within the(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C matrix.Fracture toughness increased with the increase in SiCw content,while Vickers hardness remains almost unchanged.The toughness of(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C-20 vol.%SiCw ceramics reached 4.3±0.3 MPa m^(1/2),which was approximately 43%higher than that of the monolithic(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C ceramic(3.0±0.2 MPa m1/2).The main toughening mechanisms were attributed to crack deflection,whisker debonding,and whisker pullout.展开更多
Jadomycin is an antibiotic that has shown activities against bacteria, yeasts and fungi as well as cytotoxic properties to cancer cells. Because of the wide range of its inhibitory actions, jadomycin shows promise as ...Jadomycin is an antibiotic that has shown activities against bacteria, yeasts and fungi as well as cytotoxic properties to cancer cells. Because of the wide range of its inhibitory actions, jadomycin shows promise as a novel antibiotic and cancer treatment drug. Streptomyces venezuelae are aerobic bacteria that produce jadomycin and the size of bacterial population can significantly affect the yield of jadomycin. Therefore, the bacterial population must be accurately measured in order to standardize the reproducibility of jadomycin production process. In this study, a dehydrogenase activity measurement test, using triphenyl tetrazolium chloride (TTC), was used to measure the dehydrogenase activity of Streptomyces venezuelae during growth in maltose-yeast extract-malt extract (MYM) broth. The aims were to evaluate the effectiveness of the test for measuring microbial growth and to study the effects of the test conditions (incubation time, incubation temperature and medium pH) on triphenyl formazan (TF) yield. The results showed that the TF yield was highly correlated to the optical density. The highest TF yield was observed at a pH of 6 at all incubation times and temperature. Lower TF yields were obtained at higher temperature (40 and 50oC) compared to those obtained at lower temperatures (22 and 30oC). The difference between the yields obtained at 22oC and 30oC were not significant. The differences between incubation time were also not significant. The recommended test conditions are an incubation time of 1 hour at a temperature of 30oC and a pH of 6 followed by three extractions using methanol.展开更多
Pesticides provide the primary means for controlling organisms that compete with man for food and fibre or cause injury to man, livestock and crops. They played a vital role in the economic production of wide ranges o...Pesticides provide the primary means for controlling organisms that compete with man for food and fibre or cause injury to man, livestock and crops. They played a vital role in the economic production of wide ranges of vegetable, fruit, cereal, forage, fibre and oil crops which now constitute a large part of successful agricultural industry in many countries. After application to the target areas, pesticide residues are removed from applicators by rinsing with water which results in the formation of a toxic wastewater that represents a disposal problem for many farmers. Pesticides can adversely affect people, pets, livestock and wildlife in addition to the pests they are intended to destroy. The phenomenon of biomagnification of some pesticides has resulted in reproductive failure of some fish species and egg shell thinning of birds such as peregrine falcons, sparrow hawk and eagle owls. Pesticide toxicity to humans include skin and eye irritation and skin cancer. Therefore, care must be exercised in the application, disposal and treatment of pesticides. Currently, disposal of pesticide wastewater is carried out by: 1) land cultivation, 2) dumping in soil pits, plastic pits and concrete pits or on land and in extreme cases in streams near the rinsing operation, 3) use of evaporation beds and 4) land filling. These methods of disposal are unsafe as the surface run off will reach streams, rivers and lakes and the infiltration of the wastewater into the local soil will eventually reach ground water. The treatment methods currently used for pesticide wastewater include: 1) incineration (incinerators and open burning), 2) chemical treatments (O3/UV, hydrolysis, Fenton oxidation and KPEG), 3) physical treatments (inorganic, organic absorbents and activated carbon) and 4) biological treatments (composting, bioaugmentation and phytoremediation). Therefore, the choice of safe, on farm disposal techniques for agricultural pesticides is very important. A comparative analysis was performed on 18 methods of pesticide disposal/treatment using six criteria: containment, detoxification ability, cost, time, suitability for on farm use, size and evaporation efficiency. The results indicated that of the 18 methods evaluated, 9 scored above 80/100 and can be used on farm. They were organic absorbents (97), composting (94), bioaugmentation (92), inorganic absorbents (90), Fenton oxidation (86), O3/UV (83), activated carbon (82), hydrolysis (82), and land cultivation (80). The other methods are not suitable for on farm use as they suffered from containment problems, high cost and variability of effectiveness.展开更多
The aim of this study was to develop a remediation system for the treatment of a low-level pesticide wastewater that uses available onfarm organic matter as an absorption media, is capable of reducing the concentratio...The aim of this study was to develop a remediation system for the treatment of a low-level pesticide wastewater that uses available onfarm organic matter as an absorption media, is capable of reducing the concentration of the pesticide to a safe level and is economically viable for implementation by farmers. The absorption capacity of chopped hay and soybean to the fungicide captan was evaluated under batch conditions and the effectiveness of the composting process in depredating captan in contaminated organic materials was evaluated. The results showed that both hay and soybean plant residues were very effective in absorbing 99.2% and 98.5% of captan form the wastewater after 4 hours, respectively. Because of its availability, hay can be used in an onfarm pesticide immobilization system that consists of shallow reinforced concrete pit (filled with hay) with steel bars across the top for machinery to roll onto and be washed. The wastewater can be retained for 24 hours which is a sufficient time for hay to absorb the captan. The contaminated hay can then be composted. The addition of used cooking oil raised the temperature of the composting mixture to 63?C. Small reductions in moisture content (from 60% to 58.9 %) and C:N ratio (from 30:1 to 28:1) were observed while reductions of 18.92%, 15.56% and 4.8% in the volatile solids, total carbon total Kjeldahl nitrogen were achieved after 10 d of composting, respectively. About 92.4% of the captan was degraded in the first 4 days of composting. Most of captan (92.4%) was degraded during the mesophilic stage (first 3 days). The degradation rate constant for the mesophilic stage (0.724 d-1) was 2.74 times the degradation rate constant for the thermophilic stage (0.264 d-1). An onfarm windrow composting process would be very effective in degrading captan contaminated hay. The captan contaminated hay could be mixed with equal amount poultry manure or dairy manure to provide the required bioavailable carbon and nutrients for the composting process. Some used cooking oil could also be added to maintain higher temperature within the compost matrix. The windrows should be mixed on a daily basis to provide sufficient oxygen for the composting microorganisms.展开更多
In order to prepare high toughness(Ti,Zr,Nb,Ta,Mo)C ceramics at low temperatures while maintaining high hardness,a liquid-phase sintering process combined with Co-based liquid-phase extrusion strategy was adopted in t...In order to prepare high toughness(Ti,Zr,Nb,Ta,Mo)C ceramics at low temperatures while maintaining high hardness,a liquid-phase sintering process combined with Co-based liquid-phase extrusion strategy was adopted in this study.The densification temperature can be lowered to 1350℃,which is much lower than the solid-state sintering temperature(~2000℃)generally employed for high-entropy carbide ceramics.When sintered at 1550℃and 30 MPa applied pressure,part of the Co-based liquid-phase was squeezed out of the graphite mold,such that only~3.21 vol%of Co remained in the high-entropy ceramic.Compared to the Co-free solid-state sintered(Ti,Zr,Nb,Ta,Mo)C ceramics,prepared at 2000℃and 35 MPa,the hardness was slightly decreased from 25.06±0.32 to 24.11±0.75 GPa,but the toughness was increased from 2.25±0.22 to 4.07±0.13 MPa·m^(1/2).This work provides a new strategy for low-temperature densification of high-entropy carbides with both high hardness and high toughness.展开更多
Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The p...Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The performance in these systems is dependent on catalyst properties and reactivity for a given light source, in conjunc-tion with the coupled transport of reactants within the media and photons falling incident to the catalyst surface. Experimental and computational analyses of local mass transfer and radiation pattems for a broad range of corrugation angles, depths, and non-idealities introduced during manufacture (i.e. fold curvature) are thus integrated to the design and optimization of these systems. This work explores techniques for determining incident energy distribu-tions on the surface of corrugated reactor geometries with non-ideal cross-sectional profiles, and the local and overall mass transfer rates obtained using computational fluid dynamics and experimental analysis. By examining the reaction kinetics for the photo-degradation of 4-chlorophenol over a TiO2 catalyst, the effects of surface area, energy incidence with photon recapture, and local mass transfer on overall reactor performance are presented to highlight ootimization concerns for these tvoes of reactors.展开更多
文摘Collagenase was isolated from fish waste (a mixture of haddock, herring, ground fish and flounder) using a Tris-buffer system. The proteins in the crude extract were precipitated using ammonium sulfate (40% - 80%) and purified with gel-filtration chromatography using Sephadex G-100. The results showed that the collagenase enzyme was produced as a latent enzyme and was activated with bovine trypsin and potassium thiocyanate (KSCN). The enzyme activity was affected by pH and temperature. Optimal enzyme activities were found at 35?C and a pH of 7.5 when insoluble collagene type I was used as substrate and the liberated amino acids were measured in relation to L-leucine in the presence of ninhydrin. The enzyme activity was completely inhibited by the action of ethylenediaminetetraacetic acid (EDTA) suggesting that the collagenase enzyme isolated from the fish waste is a metalloproteinase enzyme requiring metal ions for enzyme activity. Dialysis against KSCN decreased the enzyme total activity and increased its specific activity. Sodium dodecyl sulphate polyacryla-mide gel electrophoresis (SDS-PAGE) indicated that the purified procollagenase enzyme have only one band at molecular weight of 50 kilodaltons (kDa). When the enzyme was cleaved with trypsin, it was found to consist of two subunits: a large unit with a molecular weight of 50 kDa and a small unit with a molecular weight of 10 kDa.
文摘Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is investigated and compared to a new generation of shape memory alloys, i.e., 60NiTi. Only limited amount of work has been done to investigate the dependency of superelasticity on loading rate of TiNi under localized compressive loads, but much work is directed towards understanding the effect of strain rate on tensile properties. Understanding the superelastic behavior helps to employ superelastic alloys in applications where high impact loading is expected as in bearings and gears. In the present study, it is found that dent resistance of Ti-Ni alloy is not significantly affected by loading rate (within the employed loading conditions). It has also been found that new-generation 60NiTi alloy exhibits superior wear and dent resistance, as well as higher hardness compared to equiatomic TiNi.
文摘The reactivity between charged Li(Li_(0.115)Mn_(0.529)Ni_(0.339)Al_(0.017))O_(2)(Li-rich),single crystal Li(Ni_(0.8)Mn_(0.1)Co_(0.1))O_(2)(SC-NMC811),LiFePO_(4)(LFP) and LiMn_(0.8)Fe_(0.2)PO_(4)(LMFP) positive electrodes at different states of charge(SOCs) and traditional carbonate-based electrolyte at elevated temperatures is systematically studied using accelerating rate calorimetry(ARC).The results show that the SOC greatly affects the thermal stability of the Li-rich and SC-NMC811 when traditional carbonate-based electrolyte is used.Although an increase in the SOC increases the energy density of lithium-ion cells,it also increases the reactivity between charged Li-rich and SC-NMC811 samples with electrolyte at elevated temperatures.In comparison with SC-NMC811,the Li-rich samples are much more stable at elevated temperatures,and the latter have higher specific capacity.SC-NMC811 samples are less reactive than traditional polycrystalline NMC811.Both LFP and LMFP samples show excellent thermal stability at elevated temperatures.The substitution of Fe by Mn in the olivine series positive materials does not impact the reactivity with electrolyte.
文摘Due to their light weight, high corrosion resistance and good heat conductivity, aluminium alloys are used in many industries today. They are suitable for manufacturing many automotive components such as clutch housings. These alloys can be fabricated by powder metallurgy and casting methods, in which porosity is a common feature. The presence of pores is responsible for reducing their strength, ductility and wear resistance. The present study aims to establish an understanding of the tribological behavior of high pressure die cast Al A380M and powder metallurgy synthesized Al 6061. In this study, dry sliding wear behavior of Al A380M and Al 6061 alloys was investigated under low loads (1.5 N – 5 N) against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration and frequency of 10 Hz. Wear mechanisms were studied through microscopic examination of the wear tracks. This study revealed that due to combined effect of real area of contact and subsurface cracking, wear rate increased with increasing porosity content. The difference in friction and wear behavior between received Al A380M and Al 6061 is attributed to their hardness differences.
文摘Due to light weight, high specific strength, high corrosion resistance and good heat transfer ability, aluminium alloys are becoming attractive for critical structural applications. These alloys can be manufactured using powder metallurgy techniques in which porosity is a common characteristic. The presence of pores is responsible for decreasing effective load bearing cross sectional area and inducing stress concentration sites for strain localization and damage, decreasing both strength and ductility. The present study aims to establish a better understanding of the relationship between surface porosity and corresponding wear behavior. In this study, porous specimens were produced using powder metallurgy technique and the extent of wear damage and the type of wear was investigated under low load range of 1.5 - 5 N against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration and frequency of 10 Hz. Scanning electron microscopy of the wear tracks and wear debris was carried out to understand wear mechanisms. This study revealed that due to combined effect of high stress intensity and subsurface cracking, wear rate increases with increasing porosity content. The friction and wear behavior of pure Al and Al 6061 as a function of porosity content can be attributed to their hardness and corresponding wear mechanism.
基金financially supported by the National Natural Science Foundation of China(Nos.51832002,51402055,51602060,U1401247)the Science and Technology Program of Guangzhou(No.201704030095)。
文摘High-entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C ceramics,with different contents(0,5,10,and 20 vol.%)of Si C whiskers(SiCw),were fabricated by spark plasma sintering using raw powders synthesized via carbothermal reduction.The application of a uniaxial compaction force led to texture development of the SiCw within the(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C matrix.Fracture toughness increased with the increase in SiCw content,while Vickers hardness remains almost unchanged.The toughness of(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C-20 vol.%SiCw ceramics reached 4.3±0.3 MPa m^(1/2),which was approximately 43%higher than that of the monolithic(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C ceramic(3.0±0.2 MPa m1/2).The main toughening mechanisms were attributed to crack deflection,whisker debonding,and whisker pullout.
文摘Jadomycin is an antibiotic that has shown activities against bacteria, yeasts and fungi as well as cytotoxic properties to cancer cells. Because of the wide range of its inhibitory actions, jadomycin shows promise as a novel antibiotic and cancer treatment drug. Streptomyces venezuelae are aerobic bacteria that produce jadomycin and the size of bacterial population can significantly affect the yield of jadomycin. Therefore, the bacterial population must be accurately measured in order to standardize the reproducibility of jadomycin production process. In this study, a dehydrogenase activity measurement test, using triphenyl tetrazolium chloride (TTC), was used to measure the dehydrogenase activity of Streptomyces venezuelae during growth in maltose-yeast extract-malt extract (MYM) broth. The aims were to evaluate the effectiveness of the test for measuring microbial growth and to study the effects of the test conditions (incubation time, incubation temperature and medium pH) on triphenyl formazan (TF) yield. The results showed that the TF yield was highly correlated to the optical density. The highest TF yield was observed at a pH of 6 at all incubation times and temperature. Lower TF yields were obtained at higher temperature (40 and 50oC) compared to those obtained at lower temperatures (22 and 30oC). The difference between the yields obtained at 22oC and 30oC were not significant. The differences between incubation time were also not significant. The recommended test conditions are an incubation time of 1 hour at a temperature of 30oC and a pH of 6 followed by three extractions using methanol.
文摘Pesticides provide the primary means for controlling organisms that compete with man for food and fibre or cause injury to man, livestock and crops. They played a vital role in the economic production of wide ranges of vegetable, fruit, cereal, forage, fibre and oil crops which now constitute a large part of successful agricultural industry in many countries. After application to the target areas, pesticide residues are removed from applicators by rinsing with water which results in the formation of a toxic wastewater that represents a disposal problem for many farmers. Pesticides can adversely affect people, pets, livestock and wildlife in addition to the pests they are intended to destroy. The phenomenon of biomagnification of some pesticides has resulted in reproductive failure of some fish species and egg shell thinning of birds such as peregrine falcons, sparrow hawk and eagle owls. Pesticide toxicity to humans include skin and eye irritation and skin cancer. Therefore, care must be exercised in the application, disposal and treatment of pesticides. Currently, disposal of pesticide wastewater is carried out by: 1) land cultivation, 2) dumping in soil pits, plastic pits and concrete pits or on land and in extreme cases in streams near the rinsing operation, 3) use of evaporation beds and 4) land filling. These methods of disposal are unsafe as the surface run off will reach streams, rivers and lakes and the infiltration of the wastewater into the local soil will eventually reach ground water. The treatment methods currently used for pesticide wastewater include: 1) incineration (incinerators and open burning), 2) chemical treatments (O3/UV, hydrolysis, Fenton oxidation and KPEG), 3) physical treatments (inorganic, organic absorbents and activated carbon) and 4) biological treatments (composting, bioaugmentation and phytoremediation). Therefore, the choice of safe, on farm disposal techniques for agricultural pesticides is very important. A comparative analysis was performed on 18 methods of pesticide disposal/treatment using six criteria: containment, detoxification ability, cost, time, suitability for on farm use, size and evaporation efficiency. The results indicated that of the 18 methods evaluated, 9 scored above 80/100 and can be used on farm. They were organic absorbents (97), composting (94), bioaugmentation (92), inorganic absorbents (90), Fenton oxidation (86), O3/UV (83), activated carbon (82), hydrolysis (82), and land cultivation (80). The other methods are not suitable for on farm use as they suffered from containment problems, high cost and variability of effectiveness.
文摘The aim of this study was to develop a remediation system for the treatment of a low-level pesticide wastewater that uses available onfarm organic matter as an absorption media, is capable of reducing the concentration of the pesticide to a safe level and is economically viable for implementation by farmers. The absorption capacity of chopped hay and soybean to the fungicide captan was evaluated under batch conditions and the effectiveness of the composting process in depredating captan in contaminated organic materials was evaluated. The results showed that both hay and soybean plant residues were very effective in absorbing 99.2% and 98.5% of captan form the wastewater after 4 hours, respectively. Because of its availability, hay can be used in an onfarm pesticide immobilization system that consists of shallow reinforced concrete pit (filled with hay) with steel bars across the top for machinery to roll onto and be washed. The wastewater can be retained for 24 hours which is a sufficient time for hay to absorb the captan. The contaminated hay can then be composted. The addition of used cooking oil raised the temperature of the composting mixture to 63?C. Small reductions in moisture content (from 60% to 58.9 %) and C:N ratio (from 30:1 to 28:1) were observed while reductions of 18.92%, 15.56% and 4.8% in the volatile solids, total carbon total Kjeldahl nitrogen were achieved after 10 d of composting, respectively. About 92.4% of the captan was degraded in the first 4 days of composting. Most of captan (92.4%) was degraded during the mesophilic stage (first 3 days). The degradation rate constant for the mesophilic stage (0.724 d-1) was 2.74 times the degradation rate constant for the thermophilic stage (0.264 d-1). An onfarm windrow composting process would be very effective in degrading captan contaminated hay. The captan contaminated hay could be mixed with equal amount poultry manure or dairy manure to provide the required bioavailable carbon and nutrients for the composting process. Some used cooking oil could also be added to maintain higher temperature within the compost matrix. The windrows should be mixed on a daily basis to provide sufficient oxygen for the composting microorganisms.
基金supported by the National Natural Science Foundation of China(Grant Nos.51832002,51402055,51602060,and U1401247)the Science and Technology Program of Guangzhou(Grant No.201704030095)。
文摘In order to prepare high toughness(Ti,Zr,Nb,Ta,Mo)C ceramics at low temperatures while maintaining high hardness,a liquid-phase sintering process combined with Co-based liquid-phase extrusion strategy was adopted in this study.The densification temperature can be lowered to 1350℃,which is much lower than the solid-state sintering temperature(~2000℃)generally employed for high-entropy carbide ceramics.When sintered at 1550℃and 30 MPa applied pressure,part of the Co-based liquid-phase was squeezed out of the graphite mold,such that only~3.21 vol%of Co remained in the high-entropy ceramic.Compared to the Co-free solid-state sintered(Ti,Zr,Nb,Ta,Mo)C ceramics,prepared at 2000℃and 35 MPa,the hardness was slightly decreased from 25.06±0.32 to 24.11±0.75 GPa,but the toughness was increased from 2.25±0.22 to 4.07±0.13 MPa·m^(1/2).This work provides a new strategy for low-temperature densification of high-entropy carbides with both high hardness and high toughness.
文摘Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The performance in these systems is dependent on catalyst properties and reactivity for a given light source, in conjunc-tion with the coupled transport of reactants within the media and photons falling incident to the catalyst surface. Experimental and computational analyses of local mass transfer and radiation pattems for a broad range of corrugation angles, depths, and non-idealities introduced during manufacture (i.e. fold curvature) are thus integrated to the design and optimization of these systems. This work explores techniques for determining incident energy distribu-tions on the surface of corrugated reactor geometries with non-ideal cross-sectional profiles, and the local and overall mass transfer rates obtained using computational fluid dynamics and experimental analysis. By examining the reaction kinetics for the photo-degradation of 4-chlorophenol over a TiO2 catalyst, the effects of surface area, energy incidence with photon recapture, and local mass transfer on overall reactor performance are presented to highlight ootimization concerns for these tvoes of reactors.