The unique structural and physical properties of boron carbide, which make it suitable for a wide range of applications,demands the development of low-cost and green synthesis method. In the present work, the commonly...The unique structural and physical properties of boron carbide, which make it suitable for a wide range of applications,demands the development of low-cost and green synthesis method. In the present work, the commonly available leaves of aloe vera are hydrothermally treated to form the carbon precursor for the synthesis of boron carbide. The morphological characterization reveals the porous nature of the precursor turning into a tubular structure upon boron carbide formation.The structural characterization by x-ray diffraction and other spectroscopic techniques such as Fourier transform infrared,Raman, photoluminescence and uv-visible near-infrared spectroscopy confirm the formation of boron carbide. The thermogravimetric analysis of the sample is found to exhibit good thermal stability above 500 °C. When the sample is annealed to 600 °C, boron carbide with phase purity is obtained, which is confirmed through XRD and FTIR analyses. The optical emission properties of the sample are studied through CIE plot and power spectrum. Compared with other natural precursors for boron carbide, the aloe vera is found to give a good yield above 50%.展开更多
We fabricated complex microfluidic devices in silica glass by water-assisted femtosecond laser ablation and sub- sequent heat treatment. The experimental results show that after heat treatment, the diameter of the mic...We fabricated complex microfluidic devices in silica glass by water-assisted femtosecond laser ablation and sub- sequent heat treatment. The experimental results show that after heat treatment, the diameter of the microehannels is significantly reduced and the internal surface roughness is improved. The diameters of the fabricated microehannels can be modulated by changing the annealing temperature and the annealing time. During annealing, the temperature affects the diameter and shape of the protrusions in microfluidic devices very strongly, and these changes are mainly caused by uniform expansion and the action of surface tension.展开更多
The paper explores the evolution of thermal behavior of the material by studying the variations in thermal diffusivity using the single beam thermal lens(TL) technique. For this purpose, the decomposition of Cu(OH)_(2...The paper explores the evolution of thermal behavior of the material by studying the variations in thermal diffusivity using the single beam thermal lens(TL) technique. For this purpose, the decomposition of Cu(OH)_(2) into CuO is studied in a time range up to 120 h, by subjecting the sample to morphological, structural, and spectroscopic characterizations. The time evolution of thermal diffusivity can be divided into three regions for demonstrating the dynamics of the reaction. When the reaction is complete, the thermal diffusivity is also found to be saturated. In addition to the morphological modifications,from rods to flakes, the variations in the amount of hydroxyl group are attributed to be responsible for the enhancement of base fluid's thermal diffusivity by 165%. Thus the study unveils the role of hydroxyl groups in the thermal behavior of CuO.展开更多
Based on the Helmholtz equations, the full-vector finite element method (FEM) accompanied with the shifted iteration algorithm is used to analyze in-phase supermodes of a 19-core photonic crystal fiber. The effects of...Based on the Helmholtz equations, the full-vector finite element method (FEM) accompanied with the shifted iteration algorithm is used to analyze in-phase supermodes of a 19-core photonic crystal fiber. The effects of fiber structural parameters on the in-phase supermode field are also studied. The results indicate that the form of the fiber structure plays a key role on coupling of fiber cores, and the desired mode shapes which have the same amplitude in each core can be obtained by choosing the appropriate diameter of airhole. The results show a viable option for further achieving high-power laser output.展开更多
The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57μm driven by a small-scale diode-pumped Nd:YVO4 laser are thoroughly presented...The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57μm driven by a small-scale diode-pumped Nd:YVO4 laser are thoroughly presented.It is found that the performances of the two types of IOPOs are complementary.The actively Q-switched IOPO features a shorter pulse duration,a higher peak power,and a superior power and pulse stability.However,in terms of compactness,operation threshold and conversion efficiency,passively Q-switched IOPOs are more attractive.It is further indicated that the passively Q-switched IOPO at 1.57 μm is a promising and cost-effective eye-safe laser source,especially at the low and moderate output levels.In addition,instructional improvement measures for the two types of IOPOs are also summarized.展开更多
In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as e...In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as effective refractive index, confinement loss, chromatic dispersion mode effective area and nonlinear coefficient are numerically analyzed. The simulation results show that the fibers have dispersion flattened, ultra-low loss highly nonlinear nature in the wavelength region 1.3 μm to 1.7 μm.展开更多
The influence of atmospheric turbulence on the coherence of a dual-frequency laser beam is studied experimentally. An atmospheric turbulence simulator is inserted in one arm of a Mach-Zehnder interferometer. A single ...The influence of atmospheric turbulence on the coherence of a dual-frequency laser beam is studied experimentally. An atmospheric turbulence simulator is inserted in one arm of a Mach-Zehnder interferometer. A single frequency laser beam and a dual-frequency laser beam with a frequency difference of 100 MHz travel through the interferometer, respectively. The visibilities of the interference fringes of the single and dual-frequency laser beams under different turbulent forces are compared. When the turbulence becomes stronger, the visibilities of the interference pattern of the single frequency interferometer decrease more rapidly. This shows that the atmospheric turbulence has less influence on the coherence of the dual-frequency laser beam. The linewidths broadened by the turbulence are calculated with the Wiener-Khintchine theory.展开更多
A highly sensitive optical fiber temperature sensor based on a section of liquid-filled silica capillary tube(SCT)between single mode fibers is proposed. Two micro-holes are drilled on two sides of SCT directly by usi...A highly sensitive optical fiber temperature sensor based on a section of liquid-filled silica capillary tube(SCT)between single mode fibers is proposed. Two micro-holes are drilled on two sides of SCT directly by using femtosecond laser micromachining, and liquid polymer is filled into the SCT through the micro-holes without any air bubbles and then sealed by using ultra-violet(UV) cure adhesive. The sidewall of the SCT forms a Fabry–Perot resonator, and loss peaks are achieved in the transmission spectrum of the SCT at the resonant wavelength. The resonance condition can be influenced by the refractive index variation of the liquid polymer filled in SCT, which is sensitive to temperature due to its high thermooptical coefficient(-2.98 × 10^-4℃^-1). The experimental result shows that the temperature sensitivity of the proposed fiber structure reaches 5.09 nm/℃ with a perfect linearity of 99.8%. In addition, it exhibits good repeatability and reliability in temperature sensing application.展开更多
The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by set...The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples.展开更多
The femtosecond temporal speckle field of a random medium is studied theoretically and experimentally. Femtosecond temporal speckle arises from the interference of multiple randomly scattered electric fields. The femt...The femtosecond temporal speckle field of a random medium is studied theoretically and experimentally. Femtosecond temporal speckle arises from the interference of multiple randomly scattered electric fields. The femtosecond temporal speckle field is measured with a cross-correlation frequency-resolved optical gating method. The spatial average of the speckle field yields a smooth transmitted profile. The speckle field is a circular complex Gaussian variable because the scattered light beams from different trajectories have no correlation with each other. The field and the intensity profiles of individual speckle spots fluctuate randomly in time. The ensemble average of the temporal intensity profiles converges, thereby yielding the photon travel time probability distribution function.展开更多
Narrow-gap Hg_(1-x)Cd_x Te material with a composition x of about 0.3 plays an extremely important role in mid-infrared detection applications. In this work, the optical properties of doped HgCdTe with x ≈ 0.3 are re...Narrow-gap Hg_(1-x)Cd_x Te material with a composition x of about 0.3 plays an extremely important role in mid-infrared detection applications. In this work, the optical properties of doped HgCdTe with x ≈ 0.3 are reviewed, including the defects and defect levels of intrinsic V_(Hg) and the extrinsic amphoteric arsenic(As) dopants, which can act as shallow/deep donors and acceptors. The influence of the defects on the determination of band-edge electronic structure is discussed when absorption or photoluminescence spectra are considered. The inconsistency between these two optical techniques is demonstrated and analyzed by taking into account the Fermi level position as a function of composition, doping level,conductivity type, and temperature. The defect level and its evolution, especially in As-doped HgCdTe, are presented. Our results provide a systematic understanding of the mechanisms and help for optimizing annealing conditions towards p-type As-activation, and eventually for fabricating high performance mid-infrared detectors.展开更多
The controllable periodic M-shape gratings are fabricated on the surface of silica glass by three coplanar interfering beams from a single femtosecond pulse. The configuration of the M-shape periodic structure is char...The controllable periodic M-shape gratings are fabricated on the surface of silica glass by three coplanar interfering beams from a single femtosecond pulse. The configuration of the M-shape periodic structure is characterized by optical microscopy and atomic force microscopy. The experimental results and the theoretical simulation show that the period and the modulation depth ratio between the neighboring grooves of the fabricated gratings can be controlled by adjusting the collision angles and pulse energy of the three beams, respectively.展开更多
Silver (Ag) nanoparticles with different average sizes are prepared, and the nonlinear absorption and refraction of these nanoparticles are investigated with femtosecond laser pulses at 800 nm. The smallest Ag nanop...Silver (Ag) nanoparticles with different average sizes are prepared, and the nonlinear absorption and refraction of these nanoparticles are investigated with femtosecond laser pulses at 800 nm. The smallest Ag nanoparticles show insignificant nonlinear absorption, whereas the larger ones show saturable absorption. By considering the previously reported positive nonlinear absorption of 9 nm Ag nanopartieles, the nonlinear absorptions of Ag nanopartieles are found to be size-dependeut. All these nonlinear absorptions can be compatibly explained from the viewpoints of electronic transitions, energy bands and electronic structures in the conduction band of Ag nanoparticles. The nonlinear refraction is attributed to the effect of hot electrons arising from the intraband transition in the s p conduction band of Ag nanoparticles.展开更多
A molecular dynamics simulation method is used to study the growth of narrow single-wall carbon nanotubes.It is found that the growth temperature and the species of small carbon clusters in the feedstock are important...A molecular dynamics simulation method is used to study the growth of narrow single-wall carbon nanotubes.It is found that the growth temperature and the species of small carbon clusters in the feedstock are important for the quality of the nanotubes grown.There is a temperature range of 1000-1500 K in which the narrow armchair single-wall carbon nanotubes can grow rapidly via adduction of C2 dimers,even without the existence of catalysts.The narrow zigzag tubes cannot keep open-ended growth.If the feedstock consists of various species of carbon clusters,the tubes cannot keep open-ended growth.At higher temperatures,the narrow nanotubes close rapidly in the noncatalytic environment,and the products grown are fullerene-like capsules.展开更多
Experimental evidence of abnormally deep penetration in some botanical targets by low-energy ion beams is presented.The energy spectra of 818 keV He^(+)ions penetrating a 70μm thick seed coat of maize,fruit peel of g...Experimental evidence of abnormally deep penetration in some botanical targets by low-energy ion beams is presented.The energy spectra of 818 keV He^(+)ions penetrating a 70μm thick seed coat of maize,fruit peel of grape and of tomato all have a common feature.The leading edges of these broad spectra indicate that some of the penetrating ions pass through the thick targets easily and only lose a small fraction of their initial incident energy.Rutherford backscattering spectrometry and electron microprobe measurements are used to determine the argon concentration in multilayer samples of the seed coat of maize implanted by 200 keV Ar^(+)ions.The results show that about 10%of the Ar^(+)ions can penetrate deeper than~100μm in these samples.展开更多
Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a ...Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a constant energy increase,the maximum intensity decreases,and the half width at e-2 of the maximum intensity becomes wider.Diffraction efficiency has no deterioration for the blazed grating with a proper groove shape even when the incident light contains a broad range of wavelengths and comes from a wide range of angles.展开更多
Identification of the glass formation process in various conditions is of importance for fundamental understanding of the mechanism of glass transitions as well as for developments and applications of glassy materials...Identification of the glass formation process in various conditions is of importance for fundamental understanding of the mechanism of glass transitions as well as for developments and applications of glassy materials.We investigate the role of pinning in driving the transformation of crystal into glass in two-dimensional colloidal suspensions of monodisperse microspheres.The pinning is produced by immobilizing a fraction of microspheres on the substrate of sample cells where the mobile microspheres sediment.Structurally,the crystal-hexatic-glass transition occurs with increasing the number fraction of pinningρpinning,and the orientational correlation exhibits a change from quasi-long-range to short-range order atρpinning=0.02.Interestingly,the dynamics shows a nonmonotonic change with increasing the fraction of pinning.This is due to the competition between the disorder that enhances the dynamics and the pinning that hinders the particle motions.Our work highlights the important role of the pinning on the colloidal glass transition,which not only provides a new strategy to prevent crystallization forming glass,but also is helpful for understanding of the vitrification in colloidal systems.展开更多
In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing error...In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing errors. For the sake of reducing such performance loss, a robust scheme, which consists of two cascaded signal processors, is proposed for adaptive beamformers. In the first stage, an algorithm possessing time efficiency is developed to adjust the direc-tion-of-arrival (DOA) estimate of the desired source. Based the achieved DOA estimate, the second stage provides an eigenspace beamformer combined with the spatial derivative constraints (SDC) to further mitigate the cancellation of the desired signal. Analysis and numerical results have been conducted to verify that the proposed scheme yields a better robustness against pointing errors than the conventional approaches.展开更多
Organic-inorganic hybrid light emitting diodes(LEDs) were fabricated by incorporating cadmium sulphide(Cd S) nanoparticles in hole transporting layer and light emitting materials of a polymer LED. The Cd S nanoparticl...Organic-inorganic hybrid light emitting diodes(LEDs) were fabricated by incorporating cadmium sulphide(Cd S) nanoparticles in hole transporting layer and light emitting materials of a polymer LED. The Cd S nanoparticles with size of 10 nm were synthesized by precipitation technique. The LEDs incorporated with the Cd S nanoparticles show a reduction in turn on voltage and luminance. When the nanoparticles are incorporated in a suitable fluorene based light emitting polymer, the luminance is increased along with the decrease of turn on voltage.展开更多
We achieved an ultra-flat broad spectrum output with a 20-dB bandwidth of 77.85 nm in a double-clad Yb-doped fiber laser.The intensity difference between the highest and lowest points of the spectrum indicates a flatn...We achieved an ultra-flat broad spectrum output with a 20-dB bandwidth of 77.85 nm in a double-clad Yb-doped fiber laser.The intensity difference between the highest and lowest points of the spectrum indicates a flatness better than4 dB.More notably,this ultra-flat broad spectrum maintains a stable single-pulse mode-locking state.With the increase of pump power,an ultra-wide spectrum with a 20-dB bandwidth approaching 100 nm was formed at a pump power of 2.25 W.Additionally,we obtained a 9-pulse mode-locked state at another PC station with the same pump,which is the highest number of stable mode-locked pulse bursts observed so far with a first-order Raman frequency shift.This fiber laser shows its benefits of ultra-flat broad spectrum,high stability,and ease of fabrication,which provides a new method of obtaining the broadband light source for multiple practical applications.展开更多
基金support from UGC-SAP (DRS, Phase Ⅲ) with Sanction order No. F.510/3/DRS-Ⅲ/2015(SAPI)UGC-MRP with F. No. 43-539/2014 (SR)FD Diary No.3668
文摘The unique structural and physical properties of boron carbide, which make it suitable for a wide range of applications,demands the development of low-cost and green synthesis method. In the present work, the commonly available leaves of aloe vera are hydrothermally treated to form the carbon precursor for the synthesis of boron carbide. The morphological characterization reveals the porous nature of the precursor turning into a tubular structure upon boron carbide formation.The structural characterization by x-ray diffraction and other spectroscopic techniques such as Fourier transform infrared,Raman, photoluminescence and uv-visible near-infrared spectroscopy confirm the formation of boron carbide. The thermogravimetric analysis of the sample is found to exhibit good thermal stability above 500 °C. When the sample is annealed to 600 °C, boron carbide with phase purity is obtained, which is confirmed through XRD and FTIR analyses. The optical emission properties of the sample are studied through CIE plot and power spectrum. Compared with other natural precursors for boron carbide, the aloe vera is found to give a good yield above 50%.
基金Project supported by the Science and Technology Foundation of Heilongjiang Province,China (Grant No. A200912)the Program of Excellence Team in the Harbin Institute of Technology,China
文摘We fabricated complex microfluidic devices in silica glass by water-assisted femtosecond laser ablation and sub- sequent heat treatment. The experimental results show that after heat treatment, the diameter of the microehannels is significantly reduced and the internal surface roughness is improved. The diameters of the fabricated microehannels can be modulated by changing the annealing temperature and the annealing time. During annealing, the temperature affects the diameter and shape of the protrusions in microfluidic devices very strongly, and these changes are mainly caused by uniform expansion and the action of surface tension.
文摘The paper explores the evolution of thermal behavior of the material by studying the variations in thermal diffusivity using the single beam thermal lens(TL) technique. For this purpose, the decomposition of Cu(OH)_(2) into CuO is studied in a time range up to 120 h, by subjecting the sample to morphological, structural, and spectroscopic characterizations. The time evolution of thermal diffusivity can be divided into three regions for demonstrating the dynamics of the reaction. When the reaction is complete, the thermal diffusivity is also found to be saturated. In addition to the morphological modifications,from rods to flakes, the variations in the amount of hydroxyl group are attributed to be responsible for the enhancement of base fluid's thermal diffusivity by 165%. Thus the study unveils the role of hydroxyl groups in the thermal behavior of CuO.
基金supported by the National Natural Science Foundation of China (Nos. 10676023, 60890203 and 10976017)
文摘Based on the Helmholtz equations, the full-vector finite element method (FEM) accompanied with the shifted iteration algorithm is used to analyze in-phase supermodes of a 19-core photonic crystal fiber. The effects of fiber structural parameters on the in-phase supermode field are also studied. The results indicate that the form of the fiber structure plays a key role on coupling of fiber cores, and the desired mode shapes which have the same amplitude in each core can be obtained by choosing the appropriate diameter of airhole. The results show a viable option for further achieving high-power laser output.
基金Supported by the National Natural Science Foundation of China under Grant No 61108008the Shandong-Provincial Natural Science Foundation under Grant No ZR2010FQ022the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology under Grant No HIT.NSRIF.201007.
文摘The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57μm driven by a small-scale diode-pumped Nd:YVO4 laser are thoroughly presented.It is found that the performances of the two types of IOPOs are complementary.The actively Q-switched IOPO features a shorter pulse duration,a higher peak power,and a superior power and pulse stability.However,in terms of compactness,operation threshold and conversion efficiency,passively Q-switched IOPOs are more attractive.It is further indicated that the passively Q-switched IOPO at 1.57 μm is a promising and cost-effective eye-safe laser source,especially at the low and moderate output levels.In addition,instructional improvement measures for the two types of IOPOs are also summarized.
文摘In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as effective refractive index, confinement loss, chromatic dispersion mode effective area and nonlinear coefficient are numerically analyzed. The simulation results show that the fibers have dispersion flattened, ultra-low loss highly nonlinear nature in the wavelength region 1.3 μm to 1.7 μm.
文摘The influence of atmospheric turbulence on the coherence of a dual-frequency laser beam is studied experimentally. An atmospheric turbulence simulator is inserted in one arm of a Mach-Zehnder interferometer. A single frequency laser beam and a dual-frequency laser beam with a frequency difference of 100 MHz travel through the interferometer, respectively. The visibilities of the interference fringes of the single and dual-frequency laser beams under different turbulent forces are compared. When the turbulence becomes stronger, the visibilities of the interference pattern of the single frequency interferometer decrease more rapidly. This shows that the atmospheric turbulence has less influence on the coherence of the dual-frequency laser beam. The linewidths broadened by the turbulence are calculated with the Wiener-Khintchine theory.
基金Project supported by the Scientific Research Project of Institutions of Higher Learning in Inner Mongolia Autonomous Region,China(Grant No.NJZY19214)
文摘A highly sensitive optical fiber temperature sensor based on a section of liquid-filled silica capillary tube(SCT)between single mode fibers is proposed. Two micro-holes are drilled on two sides of SCT directly by using femtosecond laser micromachining, and liquid polymer is filled into the SCT through the micro-holes without any air bubbles and then sealed by using ultra-violet(UV) cure adhesive. The sidewall of the SCT forms a Fabry–Perot resonator, and loss peaks are achieved in the transmission spectrum of the SCT at the resonant wavelength. The resonance condition can be influenced by the refractive index variation of the liquid polymer filled in SCT, which is sensitive to temperature due to its high thermooptical coefficient(-2.98 × 10^-4℃^-1). The experimental result shows that the temperature sensitivity of the proposed fiber structure reaches 5.09 nm/℃ with a perfect linearity of 99.8%. In addition, it exhibits good repeatability and reliability in temperature sensing application.
基金supported by the National Natural Science Foundation of China(Grant Nos.11304065,11304064,and 11374077)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China(Grant No.HIT.NSRIF.2011106)+1 种基金the Scientific Research Foundation of Harbin Institute of Technology at Weihai,China(Grant No.HIT(WH)X201103)the Science and Technology Foundation of Shandong Province,China(GrantNo.ZR2013AQ002)
文摘The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples.
基金supported by the Scientific Research Foundation of Harbin Institute of Technology at Weihai, China (Grant No. 2008087)
文摘The femtosecond temporal speckle field of a random medium is studied theoretically and experimentally. Femtosecond temporal speckle arises from the interference of multiple randomly scattered electric fields. The femtosecond temporal speckle field is measured with a cross-correlation frequency-resolved optical gating method. The spatial average of the speckle field yields a smooth transmitted profile. The speckle field is a circular complex Gaussian variable because the scattered light beams from different trajectories have no correlation with each other. The field and the intensity profiles of individual speckle spots fluctuate randomly in time. The ensemble average of the temporal intensity profiles converges, thereby yielding the photon travel time probability distribution function.
基金Project supported by the Major Program of the National Natural Science Foundation of China(Grant Nos.61790583,61874043,61874045,and 61775060)the National Key Research and Development Program,China(Grant No.2016YFB0501604)
文摘Narrow-gap Hg_(1-x)Cd_x Te material with a composition x of about 0.3 plays an extremely important role in mid-infrared detection applications. In this work, the optical properties of doped HgCdTe with x ≈ 0.3 are reviewed, including the defects and defect levels of intrinsic V_(Hg) and the extrinsic amphoteric arsenic(As) dopants, which can act as shallow/deep donors and acceptors. The influence of the defects on the determination of band-edge electronic structure is discussed when absorption or photoluminescence spectra are considered. The inconsistency between these two optical techniques is demonstrated and analyzed by taking into account the Fermi level position as a function of composition, doping level,conductivity type, and temperature. The defect level and its evolution, especially in As-doped HgCdTe, are presented. Our results provide a systematic understanding of the mechanisms and help for optimizing annealing conditions towards p-type As-activation, and eventually for fabricating high performance mid-infrared detectors.
基金Project supported by the Science and Technology Key Program of Shandong Province,China (Grant No 2008GG10004020)the Program of Excellent Team in the Harbin Institute of Technology,China
文摘The controllable periodic M-shape gratings are fabricated on the surface of silica glass by three coplanar interfering beams from a single femtosecond pulse. The configuration of the M-shape periodic structure is characterized by optical microscopy and atomic force microscopy. The experimental results and the theoretical simulation show that the period and the modulation depth ratio between the neighboring grooves of the fabricated gratings can be controlled by adjusting the collision angles and pulse energy of the three beams, respectively.
基金supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. A200912)the Program of Excellent Team in the Harbin Institute of Technology, Chinathe National Natural Science Foundation of China (Grant Nos. 60907023 and 10904027)
文摘Silver (Ag) nanoparticles with different average sizes are prepared, and the nonlinear absorption and refraction of these nanoparticles are investigated with femtosecond laser pulses at 800 nm. The smallest Ag nanoparticles show insignificant nonlinear absorption, whereas the larger ones show saturable absorption. By considering the previously reported positive nonlinear absorption of 9 nm Ag nanopartieles, the nonlinear absorptions of Ag nanopartieles are found to be size-dependeut. All these nonlinear absorptions can be compatibly explained from the viewpoints of electronic transitions, energy bands and electronic structures in the conduction band of Ag nanoparticles. The nonlinear refraction is attributed to the effect of hot electrons arising from the intraband transition in the s p conduction band of Ag nanoparticles.
基金Supported by the National Natural Science Foundation of China under Grant No.59972017the Education Ministry of China.
文摘A molecular dynamics simulation method is used to study the growth of narrow single-wall carbon nanotubes.It is found that the growth temperature and the species of small carbon clusters in the feedstock are important for the quality of the nanotubes grown.There is a temperature range of 1000-1500 K in which the narrow armchair single-wall carbon nanotubes can grow rapidly via adduction of C2 dimers,even without the existence of catalysts.The narrow zigzag tubes cannot keep open-ended growth.If the feedstock consists of various species of carbon clusters,the tubes cannot keep open-ended growth.At higher temperatures,the narrow nanotubes close rapidly in the noncatalytic environment,and the products grown are fullerene-like capsules.
基金Supported by the National Natural Science Foundation of China under Grant No.19890300by the Foundation for Doctoral Education Programs from the Education Ministry of China under Grant No.96042208.
文摘Experimental evidence of abnormally deep penetration in some botanical targets by low-energy ion beams is presented.The energy spectra of 818 keV He^(+)ions penetrating a 70μm thick seed coat of maize,fruit peel of grape and of tomato all have a common feature.The leading edges of these broad spectra indicate that some of the penetrating ions pass through the thick targets easily and only lose a small fraction of their initial incident energy.Rutherford backscattering spectrometry and electron microprobe measurements are used to determine the argon concentration in multilayer samples of the seed coat of maize implanted by 200 keV Ar^(+)ions.The results show that about 10%of the Ar^(+)ions can penetrate deeper than~100μm in these samples.
基金Key Technologies R&D Programme of Hubei Province(2005AA101B10)
文摘Far-field intensity and diffraction efficiency of the blazed reflection gratings illuminated with broad-bandwidth and divergent beam are investigated.When the spectral width and divergence of the incident beam with a constant energy increase,the maximum intensity decreases,and the half width at e-2 of the maximum intensity becomes wider.Diffraction efficiency has no deterioration for the blazed grating with a proper groove shape even when the incident light contains a broad range of wavelengths and comes from a wide range of angles.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 12074275, 11704269, and 11704270)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 20KJA150008 and 17KJB140020)the PAPD Program of Jiangsu Higher Education Institutions
文摘Identification of the glass formation process in various conditions is of importance for fundamental understanding of the mechanism of glass transitions as well as for developments and applications of glassy materials.We investigate the role of pinning in driving the transformation of crystal into glass in two-dimensional colloidal suspensions of monodisperse microspheres.The pinning is produced by immobilizing a fraction of microspheres on the substrate of sample cells where the mobile microspheres sediment.Structurally,the crystal-hexatic-glass transition occurs with increasing the number fraction of pinningρpinning,and the orientational correlation exhibits a change from quasi-long-range to short-range order atρpinning=0.02.Interestingly,the dynamics shows a nonmonotonic change with increasing the fraction of pinning.This is due to the competition between the disorder that enhances the dynamics and the pinning that hinders the particle motions.Our work highlights the important role of the pinning on the colloidal glass transition,which not only provides a new strategy to prevent crystallization forming glass,but also is helpful for understanding of the vitrification in colloidal systems.
文摘In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-space beamformers so as to investigate the performance degradation caused by large pointing errors. For the sake of reducing such performance loss, a robust scheme, which consists of two cascaded signal processors, is proposed for adaptive beamformers. In the first stage, an algorithm possessing time efficiency is developed to adjust the direc-tion-of-arrival (DOA) estimate of the desired source. Based the achieved DOA estimate, the second stage provides an eigenspace beamformer combined with the spatial derivative constraints (SDC) to further mitigate the cancellation of the desired signal. Analysis and numerical results have been conducted to verify that the proposed scheme yields a better robustness against pointing errors than the conventional approaches.
基金the funding from the Department of Science and Technology, India through PURSE program
文摘Organic-inorganic hybrid light emitting diodes(LEDs) were fabricated by incorporating cadmium sulphide(Cd S) nanoparticles in hole transporting layer and light emitting materials of a polymer LED. The Cd S nanoparticles with size of 10 nm were synthesized by precipitation technique. The LEDs incorporated with the Cd S nanoparticles show a reduction in turn on voltage and luminance. When the nanoparticles are incorporated in a suitable fluorene based light emitting polymer, the luminance is increased along with the decrease of turn on voltage.
基金Project supported by the National Natural Science Foundation of China(Grant No.12204132)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF122)+1 种基金Shandong Province TechnologyBased SME Innovation Enhancement Project(Grant No.2024TSGC0715)the Postgraduate Education Reform Project of Shandong Province,China(Grant No.SDYJSJGC2024107)。
文摘We achieved an ultra-flat broad spectrum output with a 20-dB bandwidth of 77.85 nm in a double-clad Yb-doped fiber laser.The intensity difference between the highest and lowest points of the spectrum indicates a flatness better than4 dB.More notably,this ultra-flat broad spectrum maintains a stable single-pulse mode-locking state.With the increase of pump power,an ultra-wide spectrum with a 20-dB bandwidth approaching 100 nm was formed at a pump power of 2.25 W.Additionally,we obtained a 9-pulse mode-locked state at another PC station with the same pump,which is the highest number of stable mode-locked pulse bursts observed so far with a first-order Raman frequency shift.This fiber laser shows its benefits of ultra-flat broad spectrum,high stability,and ease of fabrication,which provides a new method of obtaining the broadband light source for multiple practical applications.