Increasing incidences and severity of algal blooms are of major concern in coastal waters around India. In this work an automatic algorithm has been developed and applied to a series of MODIS-Aqua ocean color data to ...Increasing incidences and severity of algal blooms are of major concern in coastal waters around India. In this work an automatic algorithm has been developed and applied to a series of MODIS-Aqua ocean color data to classify and monitor four major algal blooms in these waters (i.e., Trichodesmium erythareum, Noctiluca scintillans/miliaris (green/brown), and Cochlodinium polykrikoides (red)). The algorithm is based on unique spectral signatures of these blooms previously reported by various field sampling programs. An examination of the algorithm results revealed that classified blooms agree very well with in-situ data in most oceanic waters around India. Accuracy assessment based on overall, user’s and producer’s accuracy and Kappa accuracy further revealed that the producer’s/user’s accuracy of the four algal blooms were 100% / 100%, 79.16% / 79.16%, 100% / 80%, 100% / 86.95%, respectively. The Kappa coefficient was 1.01. These results suggest that the new algorithm has the potential to classify and monitor these major algal blooms and such information is highly desired by fishermen, fish farmers and public health officials in this region. It should be noted that coefficients with the new algorithm may be finetuned based on more in-situ data sets and the optical properties of these algal blooms in oceanic waters around India.展开更多
The maximum internal tangential stress is a critical parameter for the design of the PDC (polycrystalline diamond compact) die that has been widely applied to offshore oil drilling. A new simple equation for the cal...The maximum internal tangential stress is a critical parameter for the design of the PDC (polycrystalline diamond compact) die that has been widely applied to offshore oil drilling. A new simple equation for the calculation of the stress is developed, and verified by the test data from Kingdream Corp. of China, the largest bit Company in China. An opti- mum method for the design of the PDC die is presented and demonstrated in detail, and software for the design and FEM analysis of the die is developed on the basis of the method. This software has been used in oil industry in recent years.展开更多
A new model for the remote sensing of absorption coefficients of phytoplankton aph (λ) in oceanic and coastal waters is developed and tested with SeaWiFS and MODIS-Aqua data. The model is derived from a rela-tionship...A new model for the remote sensing of absorption coefficients of phytoplankton aph (λ) in oceanic and coastal waters is developed and tested with SeaWiFS and MODIS-Aqua data. The model is derived from a rela-tionship of the remote sensing reflectance ratio Rrs (670)/Rrs (490) and aph (490) and aph (670) (from large in-situ data sets). When compared with over 470 independent in-situ data sets, the model provides accurate retrievals of the aph (λ) across the visible spectrum, with mean relative error less than 8%, slope close to unity and R2 greater than 0.8. Further comparison of the SeaWiFS-derived aph (λ) with in-situ aph (λ) values gives similar and consistent results. The model when used for analysis of MODIS-Aqua imagery, provides more realistic values of the phytoplankton absorption coefficients capturing spatial structures of the massive algal blooms in surface waters of the Arabian Sea. These results demonstrate that the new algorithm works well for both the coastal and open ocean waters observed and suggest a potential of using remote sensing to provide knowledge on the shape of phytoplankton absorption spectra that are a requirement in many inverse models to estimate phytoplankton pigment concentrations and for input into bio-optical models that predict carbon fixation rates for the global ocean.展开更多
In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow fo...In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow for more accurate prediction of the ice performance of a designed ship and provide inputs for designers of ship power and automation systems. Preliminary calculations of ship propulsion and thrust characteristics in ice can enable predictions of full-scale ice resistance without measuring the propeller thrust during sea trials. Measuring propeller revolutions,ship speed, and the power delivered to propellers could be sufficient to determine the propeller thrust of the vessel. At present, significant difficulties arise in determining the thrust of icebreakers and ice-class ships in ice conditions. These challenges are related to the fact that the traditional system of propeller/hull interaction coefficients does not function correctly in ice conditions. The wake fraction becomes negative and tends to minus infinity starting from a certain value of the propeller advance coefficient. This issue prevents accurate determination of the performance characteristics, thrust, and rotational speed of the propulsors. In this study, an alternative system of propeller/hull interaction coefficients for ice is proposed. It enables the calculation of all propulsion parameters in ice based on standard hydrodynamic tests with selfpropulsion models. An experimental method is developed to determine alternative propeller/hull interaction coefficients. A prediction method is suggested to determine propulsion performance in ice based on the alternative interaction coefficient system. A case study applying the propulsion prediction method for ice conditions is provided. This study also discusses the following issues of ship operation in ice: the scale effect of icebreaker propellers and the prospects for introducing an ice interaction coefficient.展开更多
Water depth significantly affects ship resistance,which,in turn,influences fuel consumption.Furthermore,the urgent need to reduce carbon emissions for environmental sustainability highlights the importance of applying...Water depth significantly affects ship resistance,which,in turn,influences fuel consumption.Furthermore,the urgent need to reduce carbon emissions for environmental sustainability highlights the importance of applying drag reduction methods to shallow-water vehicles.To effectively employ these methods,the initial step entails an in-depth investigation of how shallow water impacts the resistance and flow dynamics of a mini-bulk carrier.This study extensively analyzes the hydrodynamic characteristics of mini-bulk carriers,focusing on the impact of shallow water on resistance and flow dynamics utilizing a combination of experimental tests and numerical analyses.This study emphasizes the interaction between the hull and the shallow seabed.This study also highlights increased frictional drag and significant residual resistance by analyzing the total resistance at various speeds in shallow waters.The results of five key factors influencing resistance in shallow waters,namely,boundary layer thickness,shear stress,velocity and pressure,turbulence,and waves,are discussed.A decrease in water depth accelerates the flow under the hull,increasing shear stress and resistance.The accelerated flow reduces the gap between the hull and the shallow seabed,elevating water pressure and increasing sinkage and resistance.Heightened turbulence in shallow water intensifies Reynolds stress,augmenting friction and viscous resistance.展开更多
Unmanned surface vehicles(USVs)play a crucial role in various fields,including ocean climate change monitoring,ma-rine resource exploitation,and ecological environment exploration.Out of the many types of USVs,unmanne...Unmanned surface vehicles(USVs)play a crucial role in various fields,including ocean climate change monitoring,ma-rine resource exploitation,and ecological environment exploration.Out of the many types of USVs,unmanned sailboats have gained considerable attention for their ability to conduct green,large-scale ocean observations.Building on this concept,this paper proposes an unmanned sailboat propelled by parallel dual-wing sails,which is designed to meet the demands of extensive and three-dimensional marine comprehensive observation and data collection.With a focus on the parallel dual-wing sails,this study particularly investi-gates the effects of variations in the airfoil’s angle of attack and the impact of the spacing ratio between the dual sails on propulsion performance.It further analyzes the influence of one sail’s angle of attack on the performance of the other sail,as well as the flow field between the two sails.For the air navigation and underwater states,the force characteristics of the dual sail under different inflow velocities were investigated.The research findings indicate that,under certain conditions,the thrust coefficient exhibits a trend of first increasing,then decreasing,and finally increasing again with alterations in the angle of attackα.Different single-sail angles of attack have varying impacts on the opposite sail and the flow field between the dual sails.Moreover,the generated forces are positively correlated with inflow velocity in the air navigation and underwater states.The findings reveal that it is possible to reduce drag,mitigate the adverse effects of sail interaction,and thereby enhance the propulsion performance and overall navigational stability of the sailboat by applying an optimal spacing ratio design and adjusting the angle of attack and inflow velocity.展开更多
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is a...An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.展开更多
We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. M...We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. Material properties of the FG plate are graded in the thickness direction and assumed to obey a power law distribution of the volume fraction of the constituents. To set up the global eigenvalue equation, the plate is divided into sub-domains or elements and the generalized differential quadrature procedure is applied to discretize the governing, boundary and compatibility equations. By assembling discrete equations at all nodal points, the weighting coefficient and force matrices are derived. To validate the accuracy of this method, the results are compared with those of the exact solution and the finite element method. At the end, the effects of different variables and local elastic support arrangements on the buckling load factor are investigated.展开更多
Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems...Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of vip gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as vip molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a vip molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, ATp) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as vip molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.展开更多
This study presents a practical design strategy for a large-size Submerged Floating Tunnel(SFT)under different target environments through global-performance simulations.A coupled time-domain simulation model for SFT ...This study presents a practical design strategy for a large-size Submerged Floating Tunnel(SFT)under different target environments through global-performance simulations.A coupled time-domain simulation model for SFT is established to check hydro-elastic behaviors under the design random wave and earthquake excitations.The tunnel and mooring lines are modeled with a finite-element line model based on a series of lumped masses connected by axial,bending,and torsional springs,and thus the dynamic/structural deformability of the entire SFT is fully considered.The dummy-connection-mass method and constraint boundary conditions are employed to connect the tunnel and mooring lines in a convenient manner.Wave-and earthquake-induced hydrodynamic forces are evaluated by the Morison equation at instantaneous node positions.Several wave and earthquake conditions are selected to evaluate its global performance and sensitivity at different system parameters.Different BuoyancyWeight Ratios(BWRs),submergence depths,and tunnel lengths(and mooring intervals)are chosen to establish a design strategy for reducing the maximum mooring tension.Both static and dynamic tensions are critical to find an acceptable design depending on the given target environmental condition.BWR plays a crucial role in preventing snap loading,and the corresponding static tension is a primary factor if the environmental condition is mild.The tunnel length can significantly be extended by reducing BWR when environmental force is not that substantial.Dynamic tension becomes important in harsh environmental conditions,for which high BWR and short mooring interval are required.It is underscored that the wet natural frequencies with mooring are located away from the spectral peaks of design waves or earthquakes.展开更多
The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy (IMSE) meth...The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy (IMSE) method for detecting damage in offshore platform structures based on a traditional modal strain energy method (the Stubbs index method). The most significant difference from the Stubbs index method was the application of modal frequencies. The goal was to improve the robustness of the traditional method. To demonstrate the effectiveness and practicality of the proposed IMSE method, both numerical and experimental studies were conducted for different damage scenarios using a jacket platform structure. The results demonstrated the effectiveness of the IMSE method in damage location when only limited, spatially incomplete, and noise-polluted modal data is available. Comparative studies showed that the IMSE index outperformed the Stubbs index and exhibited stronger robustness, confirming the superiority of the proposed approach.展开更多
The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated wi...The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb, 200 mg/kg for Cu, 12 mg/kg for Cd, and 160 mg/kg for Ni. Three plant species, Brassica campestris, Festuca arundinacea, and Helianthus annuus, were selected for the phytodegradation experiment. Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA. The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B. campestris, F. arundinacea, and H. annuus, enhancing percentage degradation to 86%, 64%, and 85% from 45%, 54%, and 66%, respectively. The effect of HA was also observed in the degradation of n-alkanes within 30 days. The rates of removal of n-alkanes in soil planted with B. campestris and H. annuus were high for n-alkanes in the range of C11–C28. A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA. The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA. The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.展开更多
The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic, and also for structural design and equipments arrangement are so important in the ship design process. Planni...The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic, and also for structural design and equipments arrangement are so important in the ship design process. Planning tunnel high speed craft is one of the crafts in which, achievement to their top speed is more important. These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance, good sea-keeping behavior, reduce slamming and avoid porpoising. Because of the existence of the tunnel, the hull form generation of these crafts is more complex and difficult. In this paper, it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters, to generate automatically the hull form of plarming tunnel craft. At first, the equations of mathematical model are described and subsequent, three different models generated based on present method are compared and analyzed. Obviously, the generated model has more application in the early stages of design.展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
Numerical study about vortex-induced vibration (V/V) related to a flexible riser model in consideration of internal flow progressing inside has been performed. The main objective of this work is to investigate the c...Numerical study about vortex-induced vibration (V/V) related to a flexible riser model in consideration of internal flow progressing inside has been performed. The main objective of this work is to investigate the coupled fluid-structure interaction (FSI) taking place between tensioned riser model, external shear current and upward-progressing internal flow (from ocean bottom to surface). A CAE technology behind the current research which combines structural software with the CFD technology has been proposed. According to the result from dynamic analysis, it has been found that the existence of upward-progressing internal flow does play an important role in determining the vibration mode (/dominant frequency), vibration intensity and the magnitude of instantaneous vibration amplitude, when the velocity ratio of internal flow against external current is relatively high. As a rule, the larger the velocity of intemal flow is, the more it contributes to the dynamic vibration response of the flexible riser model. In addition, multi-modal vibration phenomenon has been widely observed, for asymmetric curvature along the riser span emerges in the case of external shear current being imposed.展开更多
In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to ...In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.展开更多
Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid dom...Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.展开更多
In this study,the performance of a contra rotating vertical-axis tidal-current turbine was investigated.The incompressible unsteady Reynolds-averagedNavier-Stokes(U-RANS)equations were solved via two-dimensional(2D)nu...In this study,the performance of a contra rotating vertical-axis tidal-current turbine was investigated.The incompressible unsteady Reynolds-averagedNavier-Stokes(U-RANS)equations were solved via two-dimensional(2D)numerical simulation using ANSYS Fluent computational fluid dynamics(CFD)code.An algorithm known as SIMPLE from the CFD code was used to calculate the pressure-velocity coupling and second-order finite-volume discretization for all the transport equations.The base turbine model was validated using the available experimental data.Three given scenarios for the contra rotating turbine were modeled.The contra rotating turbine performs better in a low tip speed ratio(TSR)than in a high TSR operation.In a high TSR operation,the contra rotating turbine inefficiently operates,surviving to rotate in the chaotic flow distribution.Thus,it is recommended to use contra rotating turbine as a part of new design to increase the performance of a vertical-axis tidal-current turbine with a lower TSR.展开更多
This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified frame...This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.展开更多
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil comm...Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average(ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive(AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.展开更多
文摘Increasing incidences and severity of algal blooms are of major concern in coastal waters around India. In this work an automatic algorithm has been developed and applied to a series of MODIS-Aqua ocean color data to classify and monitor four major algal blooms in these waters (i.e., Trichodesmium erythareum, Noctiluca scintillans/miliaris (green/brown), and Cochlodinium polykrikoides (red)). The algorithm is based on unique spectral signatures of these blooms previously reported by various field sampling programs. An examination of the algorithm results revealed that classified blooms agree very well with in-situ data in most oceanic waters around India. Accuracy assessment based on overall, user’s and producer’s accuracy and Kappa accuracy further revealed that the producer’s/user’s accuracy of the four algal blooms were 100% / 100%, 79.16% / 79.16%, 100% / 80%, 100% / 86.95%, respectively. The Kappa coefficient was 1.01. These results suggest that the new algorithm has the potential to classify and monitor these major algal blooms and such information is highly desired by fishermen, fish farmers and public health officials in this region. It should be noted that coefficients with the new algorithm may be finetuned based on more in-situ data sets and the optical properties of these algal blooms in oceanic waters around India.
文摘The maximum internal tangential stress is a critical parameter for the design of the PDC (polycrystalline diamond compact) die that has been widely applied to offshore oil drilling. A new simple equation for the calculation of the stress is developed, and verified by the test data from Kingdream Corp. of China, the largest bit Company in China. An opti- mum method for the design of the PDC die is presented and demonstrated in detail, and software for the design and FEM analysis of the die is developed on the basis of the method. This software has been used in oil industry in recent years.
文摘A new model for the remote sensing of absorption coefficients of phytoplankton aph (λ) in oceanic and coastal waters is developed and tested with SeaWiFS and MODIS-Aqua data. The model is derived from a rela-tionship of the remote sensing reflectance ratio Rrs (670)/Rrs (490) and aph (490) and aph (670) (from large in-situ data sets). When compared with over 470 independent in-situ data sets, the model provides accurate retrievals of the aph (λ) across the visible spectrum, with mean relative error less than 8%, slope close to unity and R2 greater than 0.8. Further comparison of the SeaWiFS-derived aph (λ) with in-situ aph (λ) values gives similar and consistent results. The model when used for analysis of MODIS-Aqua imagery, provides more realistic values of the phytoplankton absorption coefficients capturing spatial structures of the massive algal blooms in surface waters of the Arabian Sea. These results demonstrate that the new algorithm works well for both the coastal and open ocean waters observed and suggest a potential of using remote sensing to provide knowledge on the shape of phytoplankton absorption spectra that are a requirement in many inverse models to estimate phytoplankton pigment concentrations and for input into bio-optical models that predict carbon fixation rates for the global ocean.
基金supported by a grant No. 23-19-00039 of Russian Research Fund “Theoretical basis and application tools for developing a system of intellectual fleet planning and support of decisions on Arctic navigation”。
文摘In designing modern vessels, calculating the propulsion performance of ships in ice is important, including propeller effective thrust, number of revolutions, consumed power, and ship speed. Such calculations allow for more accurate prediction of the ice performance of a designed ship and provide inputs for designers of ship power and automation systems. Preliminary calculations of ship propulsion and thrust characteristics in ice can enable predictions of full-scale ice resistance without measuring the propeller thrust during sea trials. Measuring propeller revolutions,ship speed, and the power delivered to propellers could be sufficient to determine the propeller thrust of the vessel. At present, significant difficulties arise in determining the thrust of icebreakers and ice-class ships in ice conditions. These challenges are related to the fact that the traditional system of propeller/hull interaction coefficients does not function correctly in ice conditions. The wake fraction becomes negative and tends to minus infinity starting from a certain value of the propeller advance coefficient. This issue prevents accurate determination of the performance characteristics, thrust, and rotational speed of the propulsors. In this study, an alternative system of propeller/hull interaction coefficients for ice is proposed. It enables the calculation of all propulsion parameters in ice based on standard hydrodynamic tests with selfpropulsion models. An experimental method is developed to determine alternative propeller/hull interaction coefficients. A prediction method is suggested to determine propulsion performance in ice based on the alternative interaction coefficient system. A case study applying the propulsion prediction method for ice conditions is provided. This study also discusses the following issues of ship operation in ice: the scale effect of icebreaker propellers and the prospects for introducing an ice interaction coefficient.
基金Supported by the Ministry of Shipping,India(Grant No.OEC/18-19/157/MOSH/RVIJ).
文摘Water depth significantly affects ship resistance,which,in turn,influences fuel consumption.Furthermore,the urgent need to reduce carbon emissions for environmental sustainability highlights the importance of applying drag reduction methods to shallow-water vehicles.To effectively employ these methods,the initial step entails an in-depth investigation of how shallow water impacts the resistance and flow dynamics of a mini-bulk carrier.This study extensively analyzes the hydrodynamic characteristics of mini-bulk carriers,focusing on the impact of shallow water on resistance and flow dynamics utilizing a combination of experimental tests and numerical analyses.This study emphasizes the interaction between the hull and the shallow seabed.This study also highlights increased frictional drag and significant residual resistance by analyzing the total resistance at various speeds in shallow waters.The results of five key factors influencing resistance in shallow waters,namely,boundary layer thickness,shear stress,velocity and pressure,turbulence,and waves,are discussed.A decrease in water depth accelerates the flow under the hull,increasing shear stress and resistance.The accelerated flow reduces the gap between the hull and the shallow seabed,elevating water pressure and increasing sinkage and resistance.Heightened turbulence in shallow water intensifies Reynolds stress,augmenting friction and viscous resistance.
基金supported from the Shandong Provincial Natural Science Foundation(No.ZR2022ME147)the National Natural Science Foundation of China(No.52088102).
文摘Unmanned surface vehicles(USVs)play a crucial role in various fields,including ocean climate change monitoring,ma-rine resource exploitation,and ecological environment exploration.Out of the many types of USVs,unmanned sailboats have gained considerable attention for their ability to conduct green,large-scale ocean observations.Building on this concept,this paper proposes an unmanned sailboat propelled by parallel dual-wing sails,which is designed to meet the demands of extensive and three-dimensional marine comprehensive observation and data collection.With a focus on the parallel dual-wing sails,this study particularly investi-gates the effects of variations in the airfoil’s angle of attack and the impact of the spacing ratio between the dual sails on propulsion performance.It further analyzes the influence of one sail’s angle of attack on the performance of the other sail,as well as the flow field between the two sails.For the air navigation and underwater states,the force characteristics of the dual sail under different inflow velocities were investigated.The research findings indicate that,under certain conditions,the thrust coefficient exhibits a trend of first increasing,then decreasing,and finally increasing again with alterations in the angle of attackα.Different single-sail angles of attack have varying impacts on the opposite sail and the flow field between the dual sails.Moreover,the generated forces are positively correlated with inflow velocity in the air navigation and underwater states.The findings reveal that it is possible to reduce drag,mitigate the adverse effects of sail interaction,and thereby enhance the propulsion performance and overall navigational stability of the sailboat by applying an optimal spacing ratio design and adjusting the angle of attack and inflow velocity.
基金This work was partly supported by the Japan Society for the Promotion of Science (JSPS) for RONPAKU program by Foundation for University Key Teacher by the Ministry of Education of China
文摘An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.
文摘We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. Material properties of the FG plate are graded in the thickness direction and assumed to obey a power law distribution of the volume fraction of the constituents. To set up the global eigenvalue equation, the plate is divided into sub-domains or elements and the generalized differential quadrature procedure is applied to discretize the governing, boundary and compatibility equations. By assembling discrete equations at all nodal points, the weighting coefficient and force matrices are derived. To validate the accuracy of this method, the results are compared with those of the exact solution and the finite element method. At the end, the effects of different variables and local elastic support arrangements on the buckling load factor are investigated.
基金supported by the the Industrial Consultancy and Sponsored Research (ICSR),Indian Institute of Technology Madras,Chennai (Project Number OEC/10 11/530/NFSC/JITE)the National Institute of Ocean Technology (NIOT),Chennai,India (Project Number OEC/10-11/105/NIOT/JITE)
文摘Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of vip gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as vip molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a vip molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, ATp) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as vip molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.
基金This work was supported by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2017R1A5A1014883).
文摘This study presents a practical design strategy for a large-size Submerged Floating Tunnel(SFT)under different target environments through global-performance simulations.A coupled time-domain simulation model for SFT is established to check hydro-elastic behaviors under the design random wave and earthquake excitations.The tunnel and mooring lines are modeled with a finite-element line model based on a series of lumped masses connected by axial,bending,and torsional springs,and thus the dynamic/structural deformability of the entire SFT is fully considered.The dummy-connection-mass method and constraint boundary conditions are employed to connect the tunnel and mooring lines in a convenient manner.Wave-and earthquake-induced hydrodynamic forces are evaluated by the Morison equation at instantaneous node positions.Several wave and earthquake conditions are selected to evaluate its global performance and sensitivity at different system parameters.Different BuoyancyWeight Ratios(BWRs),submergence depths,and tunnel lengths(and mooring intervals)are chosen to establish a design strategy for reducing the maximum mooring tension.Both static and dynamic tensions are critical to find an acceptable design depending on the given target environmental condition.BWR plays a crucial role in preventing snap loading,and the corresponding static tension is a primary factor if the environmental condition is mild.The tunnel length can significantly be extended by reducing BWR when environmental force is not that substantial.Dynamic tension becomes important in harsh environmental conditions,for which high BWR and short mooring interval are required.It is underscored that the wet natural frequencies with mooring are located away from the spectral peaks of design waves or earthquakes.
基金Supported by the National Natural Science Foundation of China (51209189, 51379196), and the Natural Science Foundation of Shandong Province (ZR2013 EEQ006, ZR2011 EL049)
文摘The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy (IMSE) method for detecting damage in offshore platform structures based on a traditional modal strain energy method (the Stubbs index method). The most significant difference from the Stubbs index method was the application of modal frequencies. The goal was to improve the robustness of the traditional method. To demonstrate the effectiveness and practicality of the proposed IMSE method, both numerical and experimental studies were conducted for different damage scenarios using a jacket platform structure. The results demonstrated the effectiveness of the IMSE method in damage location when only limited, spatially incomplete, and noise-polluted modal data is available. Comparative studies showed that the IMSE index outperformed the Stubbs index and exhibited stronger robustness, confirming the superiority of the proposed approach.
基金supported by the Korea Research Foundation (KRF) grant funded by the Korean Government (MOEHRD) (No. KRF-2007-521-F00006)MEST(No. 2009-0075072)
文摘The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb, 200 mg/kg for Cu, 12 mg/kg for Cd, and 160 mg/kg for Ni. Three plant species, Brassica campestris, Festuca arundinacea, and Helianthus annuus, were selected for the phytodegradation experiment. Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA. The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B. campestris, F. arundinacea, and H. annuus, enhancing percentage degradation to 86%, 64%, and 85% from 45%, 54%, and 66%, respectively. The effect of HA was also observed in the degradation of n-alkanes within 30 days. The rates of removal of n-alkanes in soil planted with B. campestris and H. annuus were high for n-alkanes in the range of C11–C28. A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA. The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA. The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.
文摘The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic, and also for structural design and equipments arrangement are so important in the ship design process. Planning tunnel high speed craft is one of the crafts in which, achievement to their top speed is more important. These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance, good sea-keeping behavior, reduce slamming and avoid porpoising. Because of the existence of the tunnel, the hull form generation of these crafts is more complex and difficult. In this paper, it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters, to generate automatically the hull form of plarming tunnel craft. At first, the equations of mathematical model are described and subsequent, three different models generated based on present method are compared and analyzed. Obviously, the generated model has more application in the early stages of design.
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41106077, 51109185 and 51109186)Zhejiang Provincial Natural Science Foundation of China (Grant Nos. R5110036 and Y5110071)+2 种基金Science Research Program of Science Technology Department of Zhejiang Province (Grant No. 2011C24005)Korea Research Foundation (Grant No. KRF-2008-D00556)Scientific Research Foundation of Zhejiang Ocean University
文摘Numerical study about vortex-induced vibration (V/V) related to a flexible riser model in consideration of internal flow progressing inside has been performed. The main objective of this work is to investigate the coupled fluid-structure interaction (FSI) taking place between tensioned riser model, external shear current and upward-progressing internal flow (from ocean bottom to surface). A CAE technology behind the current research which combines structural software with the CFD technology has been proposed. According to the result from dynamic analysis, it has been found that the existence of upward-progressing internal flow does play an important role in determining the vibration mode (/dominant frequency), vibration intensity and the magnitude of instantaneous vibration amplitude, when the velocity ratio of internal flow against external current is relatively high. As a rule, the larger the velocity of intemal flow is, the more it contributes to the dynamic vibration response of the flexible riser model. In addition, multi-modal vibration phenomenon has been widely observed, for asymmetric curvature along the riser span emerges in the case of external shear current being imposed.
文摘In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.
文摘Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.
基金funded by the Directorate General of Resources for Science,Technology and Higher Education,Ministry of Research,TechnologyHigher Education of Republic Indonesia under a scheme called The Education of Master DegreeLeading to Doctoral Program for Excellent Graduates(PMDSU)undercontract number 135/SP2H/LT/DRPM/IV/2017
文摘In this study,the performance of a contra rotating vertical-axis tidal-current turbine was investigated.The incompressible unsteady Reynolds-averagedNavier-Stokes(U-RANS)equations were solved via two-dimensional(2D)numerical simulation using ANSYS Fluent computational fluid dynamics(CFD)code.An algorithm known as SIMPLE from the CFD code was used to calculate the pressure-velocity coupling and second-order finite-volume discretization for all the transport equations.The base turbine model was validated using the available experimental data.Three given scenarios for the contra rotating turbine were modeled.The contra rotating turbine performs better in a low tip speed ratio(TSR)than in a high TSR operation.In a high TSR operation,the contra rotating turbine inefficiently operates,surviving to rotate in the chaotic flow distribution.Thus,it is recommended to use contra rotating turbine as a part of new design to increase the performance of a vertical-axis tidal-current turbine with a lower TSR.
基金a part of the project titled "Development of Key Marine Equipments for Enhancement of Ocean Industry-Development of Underwater Manipulator and Thrusting System Driven by Electric Motor" funded by the Ministry of Land, Transport and Maritime Affairs, Korea
文摘This paper is concerned with the robust control synthesis of autonomous underwater vehicle (AUV) for general path following maneuvers. First, we present maneuvering kinematics and vehicle dynamics in a unified framework. Based on H∞ loop-shaping procedure, the 2-DOF autopilot controller has been presented to enhance stability and path tracking. By use of model reduction, the high-order control system is reduced to one with reasonable order, and further the scaled low-order controller has been analyzed in both the frequency and the time domains. Finally, it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.
基金financially supported by the 973 Project (Grant No. 2011CB013704)by the National Natural Science Foundation of China (Grant Nos. 51379005, 51009093)
文摘Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average(ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive(AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.