In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified ...In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synehronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and sealing exponent to meet actual requirement for the dynanfic characteristics of the UHNTF.展开更多
The possibility to detect fast neutrons with a multi-gap resistive plate chamber (MRPC) has been investigated. To detect fast neutrons, a thin polyethylene layer is coated on the surface of electrode glass as a fast...The possibility to detect fast neutrons with a multi-gap resistive plate chamber (MRPC) has been investigated. To detect fast neutrons, a thin polyethylene layer is coated on the surface of electrode glass as a fast neutron converter. The MRPC detects the charged particles generated by neutrons via the (n,p) reaction on hydrogen. A prototype detector has been developed and tested on fast neutron sources in order to evaluate its performance: good agreement between experimental results and simulation has been achieved. A detailed description of the detector and the experimental test results are presented.展开更多
In order to calculate the effect on the beam caused by an irregular accelerator element, we have expanded and improved the Linear and Electrostatic Accelerator Dynamics Simulation (LEADS) code. To achieve better cal...In order to calculate the effect on the beam caused by an irregular accelerator element, we have expanded and improved the Linear and Electrostatic Accelerator Dynamics Simulation (LEADS) code. To achieve better calculation precision, the element was divided into lots of equal intervals. In order to simplify the calculation process, a one-dimensional field is simulated and the Lorenz equation is used directly. A one-dimensional field can be imported into the LEADS code. The heteromorphic quadrupole is invented and its field is simulated and optimized using the POISSON code. As examples, the effect on the beam caused by the heteromorphic quadrupole and octupole is simulated.展开更多
基金The work was supported by the National Natural Science Foundation of China (Grant Nos. 60874087 and 61174151).
文摘In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synehronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and sealing exponent to meet actual requirement for the dynanfic characteristics of the UHNTF.
基金Supported by NSFC (10675072, 10775082, 10620210287)
文摘The possibility to detect fast neutrons with a multi-gap resistive plate chamber (MRPC) has been investigated. To detect fast neutrons, a thin polyethylene layer is coated on the surface of electrode glass as a fast neutron converter. The MRPC detects the charged particles generated by neutrons via the (n,p) reaction on hydrogen. A prototype detector has been developed and tested on fast neutron sources in order to evaluate its performance: good agreement between experimental results and simulation has been achieved. A detailed description of the detector and the experimental test results are presented.
文摘In order to calculate the effect on the beam caused by an irregular accelerator element, we have expanded and improved the Linear and Electrostatic Accelerator Dynamics Simulation (LEADS) code. To achieve better calculation precision, the element was divided into lots of equal intervals. In order to simplify the calculation process, a one-dimensional field is simulated and the Lorenz equation is used directly. A one-dimensional field can be imported into the LEADS code. The heteromorphic quadrupole is invented and its field is simulated and optimized using the POISSON code. As examples, the effect on the beam caused by the heteromorphic quadrupole and octupole is simulated.