The components from spent fuel are discharged from the core and then stored in the framework of the spent fuel pool for cooling. However, it is of great significance to save the storage space of the spent fuel pool by...The components from spent fuel are discharged from the core and then stored in the framework of the spent fuel pool for cooling. However, it is of great significance to save the storage space of the spent fuel pool by shrinkage and shearing work to increase the spare fuel lattice number. In order to solve the problem of shrinkage and shearing work of spent fuel involving the problem of radioactive safety, the radioactive source item is calculated by ORIGEN2 program base on Unit 1 Ⅱ of Lingao Nuclear Power Plant(NPP), and the radiation dose rate of the related component shrinkage operation scene is simulated by the MCNP5 program. In addition, the effectiveness of shielding measures is discussed, and the maximum dose rate is within 0.35 μSv/h at the distance of 2.5 m from component center, and the maximum dose rate is almost 0 at the distance of 3.2 m from the component center. The intensity of the radiation dose produced by the related components is very low and can be neglected, which belong to the green area of NPP. The program calculation system from source term calculation to shielding calculation is established, and an engineering example is referenced, and its application and analysis are carried out. It provides a basis for radioactive safety analysis and evaluation for the shrinkage operation of spent fuel and makes the shrinkage technology of fuel-related components safer and more reliable.展开更多
The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuc...The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuclear technology, there is the need for revolution in the Maritime sector, especially the advance marine propulsion. In current years, numerous reactor manufacturers are dynamically improving small modular reactor designs with even superior use of safety features. Several designs integrate the ultimate in greater safety. They totally remove specific accident initiators from the design. Other design features benefit to reduce different types of accident or help to mitigate the accident’s consequences. Although some safety features are mutual to maximum SMR designs, irrespective of the coolant technology, other features are specific to liquid-metal cooled, water, gas, or SMR designs. Results: There have been more reactor concepts investigated in the marine propulsion area by different assemblies and research laboratories than in the power generation field, and much can be learned from their experience for land applications. The extensive use of safety features in SMRs potential to make these power plants extremely vigorous, protecting both the public and the investor. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion. The paper will present the work to analyze the concept design of SMRs and design a modular vessel consisting of a propulsion module.展开更多
The challenge of sintering ultrafine-grained refractory metals and alloys to full density is hereby addressed by pressureless two-step sintering in tungsten-rhenium alloy and pure molybdenum. Using properly processed ...The challenge of sintering ultrafine-grained refractory metals and alloys to full density is hereby addressed by pressureless two-step sintering in tungsten-rhenium alloy and pure molybdenum. Using properly processed nano powders(~50 nm average particle size), we are able to sinter W-10Re alloy to 98.4% density below 1200 ℃ while maintaining a fine grain size of 260 nm, and sinter molybdenum to 98.3% density below 1120 ℃ while maintaining a fine grain size of 290 nm. Compared to normal sintering,two-step sintering offers record-fine grain sizes and better microstructural uniformity, which translates to better mechanical properties with higher hardness(6.3 GPa for tungsten-rhenium and 4.0 GPa for molybdenum, both being the highest in all pressurelessly sintered samples of the respective material system)and larger Weibull modulus. Together with our previous demonstration in tungsten, we believe that twostep sintering is a general effective method to produce high-quality fine-grained refractory metals and alloys, and the lessons learned here are transferable to other materials for powder metallurgy.展开更多
To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and e...To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG k-ε model as turbulence closure, along with a vapor-liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavi- tation structure depends on the interaction of the water-vapor mixture and the vapor among the whole cavitation stage, the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.展开更多
This study evaluated the nuclear data libraries for a small 100 Mega Watt electric(MWe)Molten Salt Reactor with plutonium fuel.The reactor has a power output of 100 MWe,which meets the demand for electricity generatio...This study evaluated the nuclear data libraries for a small 100 Mega Watt electric(MWe)Molten Salt Reactor with plutonium fuel.The reactor has a power output of 100 MWe,which meets the demand for electricity generation in several regions or provinces outside Java Island.Several nuclear data libraries,such as JEFF 3.1,ENDF/B-VII.0,JENDL 3.3,and JENDL 4.0,were used for a more comprehensive evaluation.LiF–BeF_(2)–ThF_(4)–PuF_(4) was used as the initial fuel composition.The thorium and plutonium concentrations in the fuel salt were varied to obtain the optimum fuel composition,leading to critical conditions.The results showed some neutronic parameters,such as the conversion ratio,neutron spectra,and effective multiplication factors,from three different nuclear data libraries.By changing the plutonium concentration in the initial fuel salt composition,the minimum plutonium loaded for the reactor criticality during 2000 days of operation time was determined to be 0.995,0.91,0.87,and 0.90 mol%for JEFF 3.1,ENDF/B-VII.0,JENDL 3.3,and JENDL 4.0,respectively.The differences in the values of each parameter were due to several factors,such as the cross-section values and number of nuclides in the nuclear data libraries.Several safety parameters were also investigated to ensure the possibility of utilizing PuF_(4) in the reactor.展开更多
Owing to safety issue and low energy density of liquid lithium-ion batteries(LIBs),all-solid-state lithium metal batteries(ASLMBs)with unique all-solid-state electrolytes(SEs)have attracted wide attentions.This arises...Owing to safety issue and low energy density of liquid lithium-ion batteries(LIBs),all-solid-state lithium metal batteries(ASLMBs)with unique all-solid-state electrolytes(SEs)have attracted wide attentions.This arises mainly from the advantages of the SEs in the suppression of lithium dendrite growth,long cycle life,and broad working temperature range,showing huge potential applications in electronic devices,electric vehicles,smart grids,and biomedical devices.However,SEs suffer from low lithiumion conductivity and low mechanical integrity,slowing down the development of practical ASLMBs.Nanostructure engineering is of great efficiency in tuning the structure and composition of the SEs with improved lithium-ion conductivity and mechanical integrity.Among various available technologies for nanostructure engineering,electrospinning is a promising technique because of its simple operation,cost-effectiveness,and efficient integration with different components.In this review,we will first give a simple description of the electrospinning process.Then,the use of electrospinning technique in the synthesis of various SEs is summarized,for example,organic nanofibrous matrix,organic/inorganic nanofibrous matrix,and inorganic nanofibrous matrix combined with other components.The current development of the advanced architectures of SEs through electrospinning technology is also presented to provide references and ideas for designing high-performance ASLMBs.Finally,an outlook and further challenges in the preparation of advanced SEs for ASLMBs through electrospinning engineering are given.展开更多
The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of he...The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of heat transfer on temperature of the reactor, a new model is set up. For any initial power, the variations of output power and reactivity with time are obtained by numerical method. The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed. It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power, and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper, and the analytical solution can be adopted. The results provide a theoretical base for safety analysis and operation management of a power reactor.展开更多
A nuclear battery consisting of a beta source,a phosphor layer and a photovoltaic device was prepared.Planar phosphor layers were synthesized through physical precipitation of ZnS:Cu,ZnS:Ag or SrAl_2O_4:Eu^(2+),Dy^(3+...A nuclear battery consisting of a beta source,a phosphor layer and a photovoltaic device was prepared.Planar phosphor layers were synthesized through physical precipitation of ZnS:Cu,ZnS:Ag or SrAl_2O_4:Eu^(2+),Dy^(3+)phosphors.The radioluminescence(RL)spectra were used to analyze the RL effects of the phosphor layers under beta-particle excitation.Feasibility of using the materials as intermediate absorbers in the beta batteries was studied.TheⅠ-Ⅴcharacteristics of beta RL nuclear batteries with different phosphor layers were tested using^(63)Ni or^(l47)Pm beta sources.The output power of zinc sulfide matrix phosphor layer was better than that of rare-earth element oxides.In addition,a thin aluminum reflective layer was vacuum-evaporated on the phosphor layers to improve the efficiency of beta RL nuclear batteries,and the results were discussed.展开更多
Colloidal dispersions of nanoparticles are known as 'nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (e.g., eros...Colloidal dispersions of nanoparticles are known as 'nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (e.g., erosion, settling, clogging) that hindered the use of particle-laden fluids in the past. At Massachusetts Institute of Technology (MIT), the authors have been studying the heat transfer characteristics of nanofluids for the past five years, with the goal of evaluating their benefits for and applicability to nuclear power systems (e.g., primary coolant, safety systems, severe accident mitigation strategies). This paper summarizes the MIT research in this area with particular emphasis to boiling behavior, including, prominently, the Critical Heat Flux limit and quenching phenomena.展开更多
Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed b...Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed by solid solution method followed by spark plasma sintering (SPS) and their thermoelectric properties in two directions were investigated, and then, the performance of composites was further optimized with an additional ball milling. The coexistence of SnSe and Ag2Se phases is clearly confirmed by energy-dispersive X-ray spectroscopy (EDX) in transmission electron microscopy (TEM). After ball milling, the size of SnSe grains as well as the incorporated Ag2Se particles reduces effectively, which synergistically optimizes the electrical and thermal transport properties at high temperature range. As a result, a maximum ZT of -0.74 at 773 K for SnSe + 1.0%AgzSe in the direction vertical to the pressing direction is achieved. Composite engineering with additional ball milling is thus proved to be an efficient way to improve the thermoelectric properties of SnSe, and this strategy could be applicable to other thermoelectric systems.展开更多
Controllable D-D neutron sources have a long service life,low cost,and non-radioactivity.There are favorable prospects for its application in geophysical well logging,since traditional chemical radioactive sources use...Controllable D-D neutron sources have a long service life,low cost,and non-radioactivity.There are favorable prospects for its application in geophysical well logging,since traditional chemical radioactive sources used for well logging pose potential threats to the safety of the human body and environment.This paper presents an improved method to measure formation density that employs a D-D neutron source.In addition,the lithological effect on the measured density was removed to better estimate the formation porosity.First,we investigated the spatial distribution of capture gamma rays through Monte Carlo simulations as well as the relationship between the ratio of capture gamma ray counts and formation density to establish theoretical support for the design of density logging tools and their corresponding data processing methods.Second,we obtained the far to near detector counts of captured gamma rays for an optimized tool structure and then established its correlation with the density and porosity of three typical formations with pure quartz,calcite,and dolomite minerals.Third,we determined the values for correcting the densities of sandstone and dolomite with the same porosity using limestone data as the reference and established the equations for calculating the correction values,which lays a solid foundation for accurately calculating formation porosity.We observed that the capture gamma ray counts first increased then decreased and varied in different formations;this was especially observed in high-porosity formations.Under the same lithologic conditions(rock matrix),as the porosity increases,the peak value of gamma ray counts moves toward the neutron source.At different detector-source distances,the ratio of the capture gamma ray counts was well correlated with the formation density.An equation of the formation density conversion was established based on the ratio of capture gamma ray counts at the detector-source distances of 30 cm and 65 cm,and the calculated values were consistent with the true values.After correction,the formation density was highly consistent with the true value of the limestone density,and the mean absolute error was 0.013 g/cm3.The calculated porosity values were very close to the true values,and the mean relative error was 2.33%,highlighting the accuracy of the proposed method.These findings provide a new method for developing D-D neutron source logging tools and their well-log data processing methods.展开更多
A prompt gamma neutron activation analysis setup was developed for heavy metal detection in aqueous solutions with a 300 m Ci241Am-Be neutron source and a4 4 inch(diameter height) BGO detector. In the present work, he...A prompt gamma neutron activation analysis setup was developed for heavy metal detection in aqueous solutions with a 300 m Ci241Am-Be neutron source and a4 4 inch(diameter height) BGO detector. In the present work, heavy metals, including Mn, Cu, Ni, Cr and Zn, were measured by the setup. The minimum detectable concentrations of Mn, Cu, Ni, Cr and Zn were 246.6, 391.2, 218.1,301.5 and 2804.1 ppm, respectively. The minimum detectable concentration of each element and the linearity response between the characteristic peak counts and elements concentrations have been studied. And the results showed that all heavy metals had a good linear relationship between characteristic peak counts and concentrations.展开更多
The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested...The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested a simple but advanced solid-state method that ensures both uniform transition metal distribution and single-crystalline morphology for Ni-rich cathode synthesis without sophisticated coprecipitation.Pelletization-assisted mechanical densification(PAMD)process on solid-state precursor mixture enables the dynamic mass transfer through the increased solid-solid contact area which facilitates the grain growth during sintering process,readily forming micro-sized single-crystalline particle.Furthermore,the improved chemical reactivity by a combination of capillary effect and vacancyassisted diffusion provides homogeneous element distribution within each primary particle.As a result,single-crystalline Ni-rich cathode with PAMD process has eliminated a potential evolution of intergranular cracking,thus achieving superior energy retention capability of 85%over 150 cycles compared to polycrystalline Ni-rich particle even after high-pressure calendering process(corresponding to electrode density of~3.6 g cm^(-3))and high cut-off voltage cycling.This work provides a concrete perspective on developing facile synthetic route of micron-sized single-crystalline Ni-rich cathode materials for high energy density lithium-ion batteries(LIBs).展开更多
Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated sili-con phases based on first-principles calculat...Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated sili-con phases based on first-principles calculations and iden-tify the linear dependence of the equivalent yield stress on the hydrostatic pressure. Such dependence may cause the compression-tension asymmetry in an amorphous Si thin film electrode from a lithiation to delithiation cycle, and leads to subsequent ratcheting of the electrode after cyclic lithiation. We propose a yield criterion of amorphous lithi-ated silicon that includes the effects of the hydrostatic stress and the lithiation reaction. We further examine the micro-scopic mechanism of deformation in lithiated silicon under mechanical load, which is attributed to the flow-defects mediated local bond switching and cavitation. Hydrostatic compression confines the flow defects thus effectively strength-ens the amorphous structure, and vice versa.展开更多
A method of spectrometry analysis based on approximation coefficients and deep belief networks was developed. Detection rate and accurate radionuclide identification distance were used to evaluate the performance of t...A method of spectrometry analysis based on approximation coefficients and deep belief networks was developed. Detection rate and accurate radionuclide identification distance were used to evaluate the performance of the proposed method in identifying radionuclides. Experimental results show that identification performance was not affected by detection time, number of radionuclides, or detection distance when the minimum detectable activity of a single radionuclide was satisfied. Moreover, the proposed method could accurately predict isotopic compositions from the spectra of moving radionuclides. Thus, the designed method can be used for radiation monitoring instruments that identify radionuclides.展开更多
We present our theoretical analysis and coarse- grained molecular dynamics (CGMD) simulation results to describe the mechanics of breakup of spherical vesi- cles driven by changes in spontaneous curvature. System- a...We present our theoretical analysis and coarse- grained molecular dynamics (CGMD) simulation results to describe the mechanics of breakup of spherical vesi- cles driven by changes in spontaneous curvature. System- atic CGMD simulations reveal the phase diagrams for the breakup and show richness in breakup morphologies. A the- oretical model based on Griffith fracture mechanics is devel- oped and used to predict the breakup condition.展开更多
Researching parameters correlation is important to analysis of reliability uncertainty for passive system. The only criterion for traditional method to determine the parameters correlation is the correlation coefficie...Researching parameters correlation is important to analysis of reliability uncertainty for passive system. The only criterion for traditional method to determine the parameters correlation is the correlation coefficient threshold. This method is subjective and needs improvement. Taking loss of normal feedwater accident of AP1000 passive residual heat removal system( PRHRS)as example,a comprehensive method was proposed to resolve the subjectivity problem of traditional method. Comprehensive method took account of scatter diagram of parameters and thermal transmission rule and significance testing of correlation coefficient comprehensively when judging parameters correlation. By comparing the effect of parameters judged by traditional and comprehensive methods respectively, we found the distance of traditional method was larger than that of comprehensive method,showing some parameters impacting thermal transmission rule removed by traditional method and comprehensive method could judge more precise and scientific parameters. So comprehensive method should be used to judge linear relation between parameters and thermal transmission rule.展开更多
Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop...Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.展开更多
Taking advantage of the magnetic field inside transmission electron microscope(TEM),a unique Lorentzforce-actuated method for quantitative friction tests was developed via a commercial electromechanical holder.With th...Taking advantage of the magnetic field inside transmission electron microscope(TEM),a unique Lorentzforce-actuated method for quantitative friction tests was developed via a commercial electromechanical holder.With this approach,a submicron-sized silver asperity sliding on a tungsten flat punch was actuated by Lorentz force due to electrical current through the punch,with the normal force imposed by the built-in transducer of the holder.The friction force was determined by tracking the elastic deflection of the fabricated cantilever from in situ video.Through correlating the friction behavior with the microstructural evolution near the silver-tungsten interface,we revealed that even when the relative motion commenced with the plastic deformation of the silver asperity,the interface can still sustain the further increasing static friction force.Exactly following the arrival of the maximum static friction force,the sliding occurred at the interface,indicating the transition from static to dynamic friction.This work enriches our understanding of the underlying physics of the dynamic friction process for metallic friction behavior.展开更多
基金Supported by the Project of Radiation Shielding Calculation Based on Unit 1 Ⅱ of Lingao Nuclear Power Plant of China
文摘The components from spent fuel are discharged from the core and then stored in the framework of the spent fuel pool for cooling. However, it is of great significance to save the storage space of the spent fuel pool by shrinkage and shearing work to increase the spare fuel lattice number. In order to solve the problem of shrinkage and shearing work of spent fuel involving the problem of radioactive safety, the radioactive source item is calculated by ORIGEN2 program base on Unit 1 Ⅱ of Lingao Nuclear Power Plant(NPP), and the radiation dose rate of the related component shrinkage operation scene is simulated by the MCNP5 program. In addition, the effectiveness of shielding measures is discussed, and the maximum dose rate is within 0.35 μSv/h at the distance of 2.5 m from component center, and the maximum dose rate is almost 0 at the distance of 3.2 m from the component center. The intensity of the radiation dose produced by the related components is very low and can be neglected, which belong to the green area of NPP. The program calculation system from source term calculation to shielding calculation is established, and an engineering example is referenced, and its application and analysis are carried out. It provides a basis for radioactive safety analysis and evaluation for the shrinkage operation of spent fuel and makes the shrinkage technology of fuel-related components safer and more reliable.
文摘The fast growth in the size and difficulty of nuclear power plant in the 1970s produced an interest in smaller, modest designs that are intrinsically safe over the usage of design features. With the development of nuclear technology, there is the need for revolution in the Maritime sector, especially the advance marine propulsion. In current years, numerous reactor manufacturers are dynamically improving small modular reactor designs with even superior use of safety features. Several designs integrate the ultimate in greater safety. They totally remove specific accident initiators from the design. Other design features benefit to reduce different types of accident or help to mitigate the accident’s consequences. Although some safety features are mutual to maximum SMR designs, irrespective of the coolant technology, other features are specific to liquid-metal cooled, water, gas, or SMR designs. Results: There have been more reactor concepts investigated in the marine propulsion area by different assemblies and research laboratories than in the power generation field, and much can be learned from their experience for land applications. The extensive use of safety features in SMRs potential to make these power plants extremely vigorous, protecting both the public and the investor. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion. The paper will present the work to analyze the concept design of SMRs and design a modular vessel consisting of a propulsion module.
基金supports by the Natural Science Foundation of China(52074032,51974029,52131307,52071013)and“111”Project(No.B170003).Y.D.and J.L.acknowledge the support by Eni S.p.A.through the MIT Energy Initiative.
文摘The challenge of sintering ultrafine-grained refractory metals and alloys to full density is hereby addressed by pressureless two-step sintering in tungsten-rhenium alloy and pure molybdenum. Using properly processed nano powders(~50 nm average particle size), we are able to sinter W-10Re alloy to 98.4% density below 1200 ℃ while maintaining a fine grain size of 260 nm, and sinter molybdenum to 98.3% density below 1120 ℃ while maintaining a fine grain size of 290 nm. Compared to normal sintering,two-step sintering offers record-fine grain sizes and better microstructural uniformity, which translates to better mechanical properties with higher hardness(6.3 GPa for tungsten-rhenium and 4.0 GPa for molybdenum, both being the highest in all pressurelessly sintered samples of the respective material system)and larger Weibull modulus. Together with our previous demonstration in tungsten, we believe that twostep sintering is a general effective method to produce high-quality fine-grained refractory metals and alloys, and the lessons learned here are transferable to other materials for powder metallurgy.
基金supported by the National Natural Science Foundation of China (50679001)NASA Constellation University Institutes Program
文摘To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG k-ε model as turbulence closure, along with a vapor-liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavi- tation structure depends on the interaction of the water-vapor mixture and the vapor among the whole cavitation stage, the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.
文摘This study evaluated the nuclear data libraries for a small 100 Mega Watt electric(MWe)Molten Salt Reactor with plutonium fuel.The reactor has a power output of 100 MWe,which meets the demand for electricity generation in several regions or provinces outside Java Island.Several nuclear data libraries,such as JEFF 3.1,ENDF/B-VII.0,JENDL 3.3,and JENDL 4.0,were used for a more comprehensive evaluation.LiF–BeF_(2)–ThF_(4)–PuF_(4) was used as the initial fuel composition.The thorium and plutonium concentrations in the fuel salt were varied to obtain the optimum fuel composition,leading to critical conditions.The results showed some neutronic parameters,such as the conversion ratio,neutron spectra,and effective multiplication factors,from three different nuclear data libraries.By changing the plutonium concentration in the initial fuel salt composition,the minimum plutonium loaded for the reactor criticality during 2000 days of operation time was determined to be 0.995,0.91,0.87,and 0.90 mol%for JEFF 3.1,ENDF/B-VII.0,JENDL 3.3,and JENDL 4.0,respectively.The differences in the values of each parameter were due to several factors,such as the cross-section values and number of nuclides in the nuclear data libraries.Several safety parameters were also investigated to ensure the possibility of utilizing PuF_(4) in the reactor.
基金financially supported by the National Key Research and Development Project of China for Demonstration of Integrated Utilization of Solid Waste in Distinctive Convergent Areas of Southeast Light Industry Building Materials(2019YFC1904500)the National Natural Science Foundation of China(Grant No.81770222)+4 种基金the Social Development Industry University Research Cooperation Project from the Department of Science and Technology in Fujian(2018Y4002)support by the Award Program for Fujian Minjiang Scholar Professorshipsupport from the Australian Research Grants Council(DP130104648)support from the NSERC Discovery Grant(NSERC RGPIN-2020-04463)McGill Start-Up Grant。
文摘Owing to safety issue and low energy density of liquid lithium-ion batteries(LIBs),all-solid-state lithium metal batteries(ASLMBs)with unique all-solid-state electrolytes(SEs)have attracted wide attentions.This arises mainly from the advantages of the SEs in the suppression of lithium dendrite growth,long cycle life,and broad working temperature range,showing huge potential applications in electronic devices,electric vehicles,smart grids,and biomedical devices.However,SEs suffer from low lithiumion conductivity and low mechanical integrity,slowing down the development of practical ASLMBs.Nanostructure engineering is of great efficiency in tuning the structure and composition of the SEs with improved lithium-ion conductivity and mechanical integrity.Among various available technologies for nanostructure engineering,electrospinning is a promising technique because of its simple operation,cost-effectiveness,and efficient integration with different components.In this review,we will first give a simple description of the electrospinning process.Then,the use of electrospinning technique in the synthesis of various SEs is summarized,for example,organic nanofibrous matrix,organic/inorganic nanofibrous matrix,and inorganic nanofibrous matrix combined with other components.The current development of the advanced architectures of SEs through electrospinning technology is also presented to provide references and ideas for designing high-performance ASLMBs.Finally,an outlook and further challenges in the preparation of advanced SEs for ASLMBs through electrospinning engineering are given.
基金Supported by the National Natural Science Foundation of China (No.10575131)
文摘The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper. Considering the effect of heat transfer on temperature of the reactor, a new model is set up. For any initial power, the variations of output power and reactivity with time are obtained by numerical method. The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed. It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power, and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper, and the analytical solution can be adopted. The results provide a theoretical base for safety analysis and operation management of a power reactor.
基金Supported by the National Natural Science Foundation of China(No.11205088)the Aeronautical Science Foundation of China(No.2012ZB52021)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Foundation of Graduate Innovation Center in NUAA(No.kfjj130125)
文摘A nuclear battery consisting of a beta source,a phosphor layer and a photovoltaic device was prepared.Planar phosphor layers were synthesized through physical precipitation of ZnS:Cu,ZnS:Ag or SrAl_2O_4:Eu^(2+),Dy^(3+)phosphors.The radioluminescence(RL)spectra were used to analyze the RL effects of the phosphor layers under beta-particle excitation.Feasibility of using the materials as intermediate absorbers in the beta batteries was studied.TheⅠ-Ⅴcharacteristics of beta RL nuclear batteries with different phosphor layers were tested using^(63)Ni or^(l47)Pm beta sources.The output power of zinc sulfide matrix phosphor layer was better than that of rare-earth element oxides.In addition,a thin aluminum reflective layer was vacuum-evaporated on the phosphor layers to improve the efficiency of beta RL nuclear batteries,and the results were discussed.
基金Supported by the National Natural Science Foundation of China (No. 11205088), the Aeronautical Science Foundation of China (No. 2012ZB52021), the Natural Science Foundation of Jiangsu Province (No. BK20141406), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Colloidal dispersions of nanoparticles are known as 'nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (e.g., erosion, settling, clogging) that hindered the use of particle-laden fluids in the past. At Massachusetts Institute of Technology (MIT), the authors have been studying the heat transfer characteristics of nanofluids for the past five years, with the goal of evaluating their benefits for and applicability to nuclear power systems (e.g., primary coolant, safety systems, severe accident mitigation strategies). This paper summarizes the MIT research in this area with particular emphasis to boiling behavior, including, prominently, the Critical Heat Flux limit and quenching phenomena.
基金financially supported by the National Science Foundation (No. DMR-1410636)the Natural Science Foundation of Guangdong Province (No. 2015A030308001)+3 种基金the Leading Talents of Guangdong Province Program (No. 00201517)the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. JCYJ20150831142508365,KQTD20160226195 65991 and KQCX2015033110182370)the National Natural Science Foundation of China (No. 51632005)supported by Project funded by China Postdoctoral Science Foundation
文摘Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed by solid solution method followed by spark plasma sintering (SPS) and their thermoelectric properties in two directions were investigated, and then, the performance of composites was further optimized with an additional ball milling. The coexistence of SnSe and Ag2Se phases is clearly confirmed by energy-dispersive X-ray spectroscopy (EDX) in transmission electron microscopy (TEM). After ball milling, the size of SnSe grains as well as the incorporated Ag2Se particles reduces effectively, which synergistically optimizes the electrical and thermal transport properties at high temperature range. As a result, a maximum ZT of -0.74 at 773 K for SnSe + 1.0%AgzSe in the direction vertical to the pressing direction is achieved. Composite engineering with additional ball milling is thus proved to be an efficient way to improve the thermoelectric properties of SnSe, and this strategy could be applicable to other thermoelectric systems.
基金supported by the National Natural Science Foundation of China(Nos.41704113,41674129)Key R&D Projects in Shandong Province(No.2019GSF109047)+1 种基金China Postdoctoral Science Foundation Grant(No.2019M661912)Science and Technology Plan Project of Shandong Education of China(Nos.J18KA190 and J18KA128)。
文摘Controllable D-D neutron sources have a long service life,low cost,and non-radioactivity.There are favorable prospects for its application in geophysical well logging,since traditional chemical radioactive sources used for well logging pose potential threats to the safety of the human body and environment.This paper presents an improved method to measure formation density that employs a D-D neutron source.In addition,the lithological effect on the measured density was removed to better estimate the formation porosity.First,we investigated the spatial distribution of capture gamma rays through Monte Carlo simulations as well as the relationship between the ratio of capture gamma ray counts and formation density to establish theoretical support for the design of density logging tools and their corresponding data processing methods.Second,we obtained the far to near detector counts of captured gamma rays for an optimized tool structure and then established its correlation with the density and porosity of three typical formations with pure quartz,calcite,and dolomite minerals.Third,we determined the values for correcting the densities of sandstone and dolomite with the same porosity using limestone data as the reference and established the equations for calculating the correction values,which lays a solid foundation for accurately calculating formation porosity.We observed that the capture gamma ray counts first increased then decreased and varied in different formations;this was especially observed in high-porosity formations.Under the same lithologic conditions(rock matrix),as the porosity increases,the peak value of gamma ray counts moves toward the neutron source.At different detector-source distances,the ratio of the capture gamma ray counts was well correlated with the formation density.An equation of the formation density conversion was established based on the ratio of capture gamma ray counts at the detector-source distances of 30 cm and 65 cm,and the calculated values were consistent with the true values.After correction,the formation density was highly consistent with the true value of the limestone density,and the mean absolute error was 0.013 g/cm3.The calculated porosity values were very close to the true values,and the mean relative error was 2.33%,highlighting the accuracy of the proposed method.These findings provide a new method for developing D-D neutron source logging tools and their well-log data processing methods.
基金Supported by Priority Academic Program Development of the Jiangsu Higher Education Institution,National Key Scientific Instrument and Equipment Development Projects(No.2013YQ040861)National Natural Science Foundation of China(No.11375087)
文摘A prompt gamma neutron activation analysis setup was developed for heavy metal detection in aqueous solutions with a 300 m Ci241Am-Be neutron source and a4 4 inch(diameter height) BGO detector. In the present work, heavy metals, including Mn, Cu, Ni, Cr and Zn, were measured by the setup. The minimum detectable concentrations of Mn, Cu, Ni, Cr and Zn were 246.6, 391.2, 218.1,301.5 and 2804.1 ppm, respectively. The minimum detectable concentration of each element and the linearity response between the characteristic peak counts and elements concentrations have been studied. And the results showed that all heavy metals had a good linear relationship between characteristic peak counts and concentrations.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)(2021R1A2C1095408)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2022R1A6A1A03051158)。
文摘The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested a simple but advanced solid-state method that ensures both uniform transition metal distribution and single-crystalline morphology for Ni-rich cathode synthesis without sophisticated coprecipitation.Pelletization-assisted mechanical densification(PAMD)process on solid-state precursor mixture enables the dynamic mass transfer through the increased solid-solid contact area which facilitates the grain growth during sintering process,readily forming micro-sized single-crystalline particle.Furthermore,the improved chemical reactivity by a combination of capillary effect and vacancyassisted diffusion provides homogeneous element distribution within each primary particle.As a result,single-crystalline Ni-rich cathode with PAMD process has eliminated a potential evolution of intergranular cracking,thus achieving superior energy retention capability of 85%over 150 cycles compared to polycrystalline Ni-rich particle even after high-pressure calendering process(corresponding to electrode density of~3.6 g cm^(-3))and high cut-off voltage cycling.This work provides a concrete perspective on developing facile synthetic route of micron-sized single-crystalline Ni-rich cathode materials for high energy density lithium-ion batteries(LIBs).
基金supported by the National Natural Science Foundation of China (11005124 and 11275229)the Natural Science Foundation of Anhui Province (1208085QA05)+1 种基金the National Fund for Scientific Research (FNRS) of Belgium, support by the SEAS Academic Computing teamthe Extreme Science and Engineering Discovery Environment (XSEDE),supported by NSF of US (TG-DMR130025 andTG-DMR130038)
文摘Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated sili-con phases based on first-principles calculations and iden-tify the linear dependence of the equivalent yield stress on the hydrostatic pressure. Such dependence may cause the compression-tension asymmetry in an amorphous Si thin film electrode from a lithiation to delithiation cycle, and leads to subsequent ratcheting of the electrode after cyclic lithiation. We propose a yield criterion of amorphous lithi-ated silicon that includes the effects of the hydrostatic stress and the lithiation reaction. We further examine the micro-scopic mechanism of deformation in lithiated silicon under mechanical load, which is attributed to the flow-defects mediated local bond switching and cavitation. Hydrostatic compression confines the flow defects thus effectively strength-ens the amorphous structure, and vice versa.
基金supported by the National Natural Science Foundation of China(No.11675078)the Foundation of Graduate Innovation Center in NUAA(No.kfjj20160606,kfjj20170613,and kfjj20170617)+3 种基金the Primary Research and Development Plan of Jiangsu Province(No.BE2017729)the Fundamental Research Funds for the Central Universities(No.NJ20160034)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX16_0353)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A method of spectrometry analysis based on approximation coefficients and deep belief networks was developed. Detection rate and accurate radionuclide identification distance were used to evaluate the performance of the proposed method in identifying radionuclides. Experimental results show that identification performance was not affected by detection time, number of radionuclides, or detection distance when the minimum detectable activity of a single radionuclide was satisfied. Moreover, the proposed method could accurately predict isotopic compositions from the spectra of moving radionuclides. Thus, the designed method can be used for radiation monitoring instruments that identify radionuclides.
文摘We present our theoretical analysis and coarse- grained molecular dynamics (CGMD) simulation results to describe the mechanics of breakup of spherical vesi- cles driven by changes in spontaneous curvature. System- atic CGMD simulations reveal the phase diagrams for the breakup and show richness in breakup morphologies. A the- oretical model based on Griffith fracture mechanics is devel- oped and used to predict the breakup condition.
基金Nuclear Reactor System Design Technology Foundation of National Key Laboratory,China(No.HT-JXYY-02-2014002)
文摘Researching parameters correlation is important to analysis of reliability uncertainty for passive system. The only criterion for traditional method to determine the parameters correlation is the correlation coefficient threshold. This method is subjective and needs improvement. Taking loss of normal feedwater accident of AP1000 passive residual heat removal system( PRHRS)as example,a comprehensive method was proposed to resolve the subjectivity problem of traditional method. Comprehensive method took account of scatter diagram of parameters and thermal transmission rule and significance testing of correlation coefficient comprehensively when judging parameters correlation. By comparing the effect of parameters judged by traditional and comprehensive methods respectively, we found the distance of traditional method was larger than that of comprehensive method,showing some parameters impacting thermal transmission rule removed by traditional method and comprehensive method could judge more precise and scientific parameters. So comprehensive method should be used to judge linear relation between parameters and thermal transmission rule.
基金the funding from the Natural Science Foundation of Shaanxi Province(No.2020JQ-065)China Postdoctoral Science Foundation(No.2020 M683459)+1 种基金Start-up Research Fund of Southeast University(4003002330)Chen Xing Plan of Shanghai Jiao Tong University
文摘Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.
基金the support by the National Key Research and Development Program of China(2017YFB0702001)National Natural Science Foundation of China(51971167)+1 种基金the support from the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies and the Collaborative Innovation Center of High-End Manufacturing Equipment and 111 Project 2.0(BP2018008)support by NSF CBET-2034902。
文摘Taking advantage of the magnetic field inside transmission electron microscope(TEM),a unique Lorentzforce-actuated method for quantitative friction tests was developed via a commercial electromechanical holder.With this approach,a submicron-sized silver asperity sliding on a tungsten flat punch was actuated by Lorentz force due to electrical current through the punch,with the normal force imposed by the built-in transducer of the holder.The friction force was determined by tracking the elastic deflection of the fabricated cantilever from in situ video.Through correlating the friction behavior with the microstructural evolution near the silver-tungsten interface,we revealed that even when the relative motion commenced with the plastic deformation of the silver asperity,the interface can still sustain the further increasing static friction force.Exactly following the arrival of the maximum static friction force,the sliding occurred at the interface,indicating the transition from static to dynamic friction.This work enriches our understanding of the underlying physics of the dynamic friction process for metallic friction behavior.