期刊文献+
共找到5,500篇文章
< 1 2 250 >
每页显示 20 50 100
Properties and performances of high-entropy materials in batteries 被引量:1
1
作者 Jiasheng Wang Jianzhong Jiang +1 位作者 Peter KLiaw Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2786-2805,共20页
High-entropy materials(HEMs),an innovative class of materials with complex stoichiometry,have recently garnered consider-able attention in energy storage applications.While their multi-element compositions(five or mor... High-entropy materials(HEMs),an innovative class of materials with complex stoichiometry,have recently garnered consider-able attention in energy storage applications.While their multi-element compositions(five or more principal elements in nearly equiatom-ic proportions)confer unique advantages such as high configurational entropy,lattice distortion,and synergistic cocktail effects,the fun-damental understanding of structure-property relationships in battery systems remains fragmented across existing studies.This review ad-dresses critical research gaps by proposing a multidimensional design paradigm that systematically integrates synergistic mechanisms spanning cathodes,anodes,electrolytes,and electrocatalysts.We provide an in-depth analysis of HEMs’thermodynamic/kinetic stabiliza-tion principles and structure-regulated electrochemical properties,integrating and establishing quantitative correlations between entropy-driven phase stability and charge transport dynamics.By summarizing the performance benchmarking results of lithium/sodium/potassi-um-ion battery components,we reveal how entropy-mediated structural tailoring enhances cycle stability and ionic conductivity.Notably,we pioneer the systematic association of high-entropy effects to electrochemical interfaces,demonstrating their unique potential in stabil-izing solid-electrolyte interphases and suppressing transition metal dissolution.Emerging opportunities in machine learning-driven com-position screening and sustainable manufacturing are discussed alongside critical challenges,including performance variability metrics and cost-benefit analysis for industrial implementation.This work provides both fundamental insights and practical guidelines for advan-cing HEMs toward next-generation battery technologies. 展开更多
关键词 high-entropy materials energy storage battery performance electrochemical properties battery systems
在线阅读 下载PDF
Adjustable corrosion and mechanical properties of Mg-Zn-Ca-Ni alloys for fracturing materials 被引量:2
2
作者 Dawei Wang Xiangshuang Jiang +7 位作者 Changxin Chen Xun Zhang Zhong-Zheng Jin Fuyong Cao Jia-Ning Zhu Cheng Wang Yinlong Ma Min Zha 《Journal of Magnesium and Alloys》 2025年第6期2618-2635,共18页
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring... Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials. 展开更多
关键词 Mg-Zn-Ca alloy Fracturing material Galvanic corrosion Corrosion barrier
在线阅读 下载PDF
Correction:Artificial Intelligence‑Powered Materials Science 被引量:1
3
作者 Xiaopeng Bai Xingcai Zhang 《Nano-Micro Letters》 2025年第9期152-152,共1页
Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the emai... Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the email address from xingcai@stanford.edu to drtea1@wteao.com.Also,the corresponding author’s affiliation can be expanded. 展开更多
关键词 materials science artificial intelligence nano micro letters
在线阅读 下载PDF
Designing Spin-Crossover Systems to Enhance Thermopower and Thermoelectric Figure-of-Merit in Paramagnetic Materials
4
作者 Md Mobarak Hossain Polash Matthew Stone +1 位作者 Songxue Chi Daryoosh Vashaee 《Energy & Environmental Materials》 2025年第1期215-224,共10页
Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,b... Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit(zT)without compromising electrical conductivity,using temperature-driven spin crossover.Our approach,supported by both theoretical and experimental evidence,is demonstrated through a case study of chromium doped-manganese telluride,but is not confined to this material and can be extended to other magnetic materials.By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover,we achieved a significant increase in thermopower,by approximately 136μV K^(-1),representing more than a 200%enhancement at elevated temperatures within the paramagnetic domain.Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower.These findings,validated by inelastic neutron scattering,X-ray photoemission spectroscopy,thermal transport,and energy conversion measurements,shed light on crucial material design parameters.We provide a comprehensive framework that analyzes the interplay between spin entropy,hopping transport,and magnon/paramagnon lifetimes,paving the way for the development of high-performance spin-driven thermoelectric materials. 展开更多
关键词 spin crossover thermoelectric materials thermopower enhancement paramagnons MAGNONS
在线阅读 下载PDF
Smart reconfigurable metadevices made of shape memory alloy metamaterials
5
作者 Shiqiang Zhao Yuancheng Fan +6 位作者 Ruisheng Yang Zhehao Ye Fuli Zhang Chen Wang Weijia Luo Yongzheng Wen Ji Zhou 《Opto-Electronic Advances》 2025年第2期6-14,共9页
Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimen... Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimentally demonstrate that integrating metamaterial design principles with the intrinsic features of natural materials can engineer thermal smart metadevices.Tunable extraordinary optical transmission like(EOT-like)phenomena have been achieved in the microwave regime using shape memory alloy(SMA).The strongly localized fields generated by designed metadevices,combined with the intense interference of incident waves,enhance transmission through subwavelength apertures.Leveraging the temperature-responsive properties of SMA,the morphology of the metadevice can be recontructed,thereby modifying its response to electromagnetic waves.The experiments demonstrated control over the operating frequency and transmission amplitude of EOT-like behavior,achieving a maximum transmission enhancement factor of 126.Furthermore,the metadevices with modular design enable the realization of multiple functions with independent control have been demonstrated.The proposed SMA-based metamaterials offer advantages in terms of miniaturization,easy processing,and high design flexibility.They may have potential applications in microwave devices requiring temperature control,such as sensing and monitoring. 展开更多
关键词 METAMATERIALS extraordinary optical transmission shape memory alloy temperature tunability
在线阅读 下载PDF
Artificial Intelligence-Powered Materials Science
6
作者 Xiaopeng Bai Xingcai Zhang 《Nano-Micro Letters》 2025年第6期212-241,共30页
The advancement of materials has played a pivotal role in the advancement of human civilization,and the emergence of artificial intelligence(AI)-empowered materials science heralds a new era with substantial potential... The advancement of materials has played a pivotal role in the advancement of human civilization,and the emergence of artificial intelligence(AI)-empowered materials science heralds a new era with substantial potential to tackle the escalating challenges related to energy,environment,and biomedical concerns in a sustainable manner.The exploration and development of sustainable materials are poised to assume a critical role in attaining technologically advanced solutions that are environmentally friendly,energy-efficient,and conducive to human well-being.This review provides a comprehensive overview of the current scholarly progress in artificial intelligence-powered materials science and its cutting-edge applications.We anticipate that AI technology will be extensively utilized in material research and development,thereby expediting the growth and implementation of novel materials.AI will serve as a catalyst for materials innovation,and in turn,advancements in materials innovation will further enhance the capabilities of AI and AI-powered materials science.Through the synergistic collaboration between AI and materials science,we stand to realize a future propelled by advanced AI-powered materials. 展开更多
关键词 Artificial intelligence Machine learning Sustainable materials DATA-DRIVEN Materials innovation
在线阅读 下载PDF
Special issue on progress of real-time confocal microscopy study on steelmaking and phase transformation in metallic materials
7
作者 Wangzhong Mu Ying Ren +3 位作者 Tong-sheng Zhang Deepoo Kumar Susanne Michelic Bryan Webler 《Journal of Iron and Steel Research International》 2025年第2期313-314,共2页
High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfa... High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfacial phenomena in ironmaking and steelmaking as well as phase transformations during heat treatment of metallic materials.The pioneering work on the application of HTCLSM dates back to twenty-five years ago,to directly observe the crystallization of undercooled steel melt. 展开更多
关键词 TRANSFORMATION materials STEEL
原文传递
Regenerative engineering AI:a new paradigm for the future of tissue regeneration
8
作者 Cato T.Laurencin Taraje Whitfield +1 位作者 Chrysoula Argyrou Fatemeh S.Hosseini 《Frontiers of Chemical Science and Engineering》 2025年第10期145-150,共6页
For over a decade,regenerative engineering has been defined as the convergence of advanced materials sciences,stem cell sciences,physics,developmental biology,and clinical translation for the regeneration of complex t... For over a decade,regenerative engineering has been defined as the convergence of advanced materials sciences,stem cell sciences,physics,developmental biology,and clinical translation for the regeneration of complex tissues.Recently,the field has made major strides because of new efforts made possible by the utilization of another growing field:artificial intelligence.However,there is currently no term to describe the use of artificial intelligence for regenerative engineering.Therefore,we hereby present a new term,“Regenerative Engineering AI”,which cohesively describes the interweaving of artificial intelligence into the framework of regenerative engineering rather than using it merely as a tool.As the first to define the term,regenerative engineering AI is the interdisciplinary integration of artificial intelligence and machine learning within the fundamental core of regenerative engineering to advance its principles and goals.It represents the subsequent synergetic relationship between the two that allow for multiplex solutions toward human limb regeneration in a manner different from individual fields and artificial intelligence alone.Establishing such a term creates a unique and unified space to consolidate the work of growing fields into one coherent discipline under a common goal and language,fostering interdisciplinary collaboration and promoting focused research and innovation. 展开更多
关键词 waterelectrolysis hydrogen production applications alkaline water electrolysis(AWE) proton exchange membrane water electrolysis(PEMWE) solid oxidewater electrolysis(SOEC) anion exchange membrane water electrolysis(AEMWE)
暂未订购
Synergistic Molecular Engineering Strategies for Enhancing Diffusion Kinetics and Interfacial Stability of theδ-MnO_(2)Cathode in Aqueous Zinc-Ion Batteries
9
作者 Yaxi Ding Keming Zhu +10 位作者 Haoqu Jin Wenxia Gao Bing Wang Shi Bian Rui He Jiahong Wang Hui Yang Kramer Denis Xue-Feng Yu Chunyi Zhi Chao Peng 《Carbon Energy》 2025年第8期15-25,共11页
Layered manganese dioxide(δ-MnO_(2))is a promising cathode material for aqueous zinc-ion batteries(AZIBs)due to its high theoretical capacity,high operating voltage,and low cost.However,its practical application face... Layered manganese dioxide(δ-MnO_(2))is a promising cathode material for aqueous zinc-ion batteries(AZIBs)due to its high theoretical capacity,high operating voltage,and low cost.However,its practical application faces challenges,such as low electronic conductivity,sluggish diffusion kinetics,and severe dissolution of Mn^(2+).In this study,we developed a δ-MnO_(2) coated with a 2-methylimidazole(δ-MnO_(2)@2-ML)hybrid cathode.Density functional theory(DFT)calculations indicate that 2-ML can be integrated into δ-MnO_(2) through both pre-intercalation and surface coating,with thermodynamically favorable outcomes.This modification expands the interlayer spacing of δ-MnO_(2) and generates Mn-N bonds on the surface,enhancing Zn^(2+)accommodation and diffusion kinetics as well as stabilizing surface Mn sites.The experimentally prepared δ-MnO_(2)@2-ML cathode,as predicted by DFT,features both 2-ML pre-intercalation and surface coating,providing more zinc-ion insertion sites and improved structural stability.Furthermore,X-ray diffraction shows the expanded interlayer spacing,which effectively buffers local electrostatic interactions,leading to an enhanced Zn^(2+)diffusion rate.Consequently,the optimized cathode(δ-MnO_(2)@2-ML)presents improved electrochemical performance and stability,and the fabricated AZIBs exhibit a high specific capacity(309.5mAh/g at 0.1 A/g),superior multiplicative performance(137.6mAh/g at 1 A/g),and impressive capacity retention(80%after 1350 cycles at 1 A/g).These results surpass the performance of most manganese-based and vanadium-based cathode materials reported to date.This dual-modulation strategy,combining interlayer engineering and interface optimization,offers a straightforward and scalable approach,potentially advancing the commercial viability of low-cost,high-performance AZIBs. 展开更多
关键词 2-METHYLIMIDAZOLE manganese oxide Mn dissolution pre-intercalation surface coating
在线阅读 下载PDF
Materials,processes,devices and applications of magnetoresistive random access memory
10
作者 Meiyin Yang Yan Cui +1 位作者 Jingsheng Chen Jun Luo 《International Journal of Extreme Manufacturing》 2025年第1期277-306,共30页
Magnetoresistive random access memory(MRAM)is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution,particularly in cache functions within circ... Magnetoresistive random access memory(MRAM)is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution,particularly in cache functions within circuits.Although MRAM has achieved mass production,its manufacturing process still remains challenging,resulting in only a few semiconductor companies dominating its production.In this review,we delve into the materials,processes,and devices used in MRAM,focusing on both the widely adopted spin transfer torque MRAM and the next-generation spin-orbit torque MRAM.We provide an overview of their operational mechanisms and manufacturing technologies.Furthermore,we outline the major hurdles faced in MRAM manufacturing and propose potential solutions in detail.Then,the applications of MRAM in artificial intelligent hardware are introduced.Finally,we present an outlook on the future development and applications of MRAM. 展开更多
关键词 spin transfer torque-magnetoresistive random access memory(STT-MRAM) spin-orbit torque(SOT)MRAM materials for MRAM field-free writing of SOT-MRAM MRAM process artificial intelligence
在线阅读 下载PDF
Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries
11
作者 Xiangyue Li Dexin Zhu +5 位作者 Kunmin Pan Xiaoye Zhou Jiaming Zhu Yingxue Wang Yongpeng Ren Hong-Hui Wu 《Chinese Chemical Letters》 2025年第5期691-694,共4页
Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To addr... Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability. 展开更多
关键词 LNCM ternary cathode material Discharge capacity Feature engineering Machine learning SHAP analysis
原文传递
The recent progress of high-entropy layered double hydroxides and high-entropy amorphous materials for water electrocatalysis
12
作者 Tadele Hunde Wondimu Zuo Yong +5 位作者 Akeel A.Shah Puiki Leung Yilkal Dessie Filimon Hadish Abraha Cristina Flox Qiang Liao 《DeCarbon》 2025年第2期64-83,共20页
High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that ... High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that allow for the development of advanced electrocatalysts for renewable energy conversion systems.The highentropy effect,crystal dislocations,cocktail effect,and slow diffusion in high-entropy layered double hydroxides(HE-LDHs)and amorphous materials(HE-AMs)have all been shown to boost electrocatalytic water oxidation performance significantly.These materials exhibit remarkable activity and stability in both alkaline and acidic conditions.HE-AMs,in particular,benefit from a variety of defects,including coordinatively unsaturated sites and loosely connected atoms,which are critical to their improved catalytic capabilities.HEMs engineering and precise nanostructure control can address the low intrinsic activity,restricted active sites,and poor conductivity of binary and ternary amorphous and LDH catalysts.This study discusses current advances in HE-LDHs and HE-AMs for water electrolysis,including synthesis methods,structural features,active site identification by DFT calculations,and their applications in water electrocatalysis.The presentation also covers potential problems and future directions for developing these materials in energy conversion device systems. 展开更多
关键词 Layered double hydroxides ELECTROCATALYST Water oxidation Amorphous high-entropy and renewable energy
在线阅读 下载PDF
A critical review of lanthanum and lanthanum-based materials:synthesis,applications,and challenges
13
作者 Satish Bajirao Jadhav Dhanaji Balaso Malavekar +5 位作者 Rakesh Anandrao Mohite Sohel Babulal Shaikh Ketaki Vasant Kadam Padamaja Niwas Pawaskar Jin Hyeok Kim Nae-Eung Lee 《Rare Metals》 2025年第8期5201-5232,共32页
Device fabrication is increasing with the importance of functional materials for industrial applications.To fulfil increasing demands,rare earth elementbased materials have become important.In particular,lanthanum(La)... Device fabrication is increasing with the importance of functional materials for industrial applications.To fulfil increasing demands,rare earth elementbased materials have become important.In particular,lanthanum(La) and La-based materials have garnered attention in recent years due to their versatile properties and wide range of potential applications.This critical review provides a comprehensive overview of the advancements in the utilization of La and its compounds across various fields.In the realm of sensing and biosensing,La-based materials exhibit better sensitivity and selectivity,indicating their suitability for detecting environmental pollutants and biomolecules.The review also explores their role in supercapacitors,where their unique electrochemical properties contribute to enhanced performance and stability.Furthermore,the catalytic properties of La compounds are highlighted in water-splitting applications,emphasizing their efficiency in oxygen and hydrogen production.The biomedical applications of Labased materials are also examined,focusing on their biocompatibility and potential in drug delivery and medical imaging.This review aims to provide a critical analysis of the current state of research,identify challenges,and suggest future directions for the development and application of La and La-based materials in these diverse fields. 展开更多
关键词 Lanthanum-based compounds Synthesis methods Chemical properties Diverse applications
原文传递
Research advances and future perspectives of zinc-based biomaterials for additive manufacturing
14
作者 Kun-Shan Yuan Cheng-Chen Deng +10 位作者 Xiang-Xiu Wang Yue-Chuan Li Chao Zhou Chuan-Rong Zhao Xiao-Zhen Dai Ahsan-Riaz Khan Ze Zhang Robert Guidoin Hai-Jun Zhang Yu-Feng Zheng Gui-Xue Wang 《Rare Metals》 2025年第7期4376-4410,共35页
Additive manufacturing (AM) of zinc-based biodegradable materials is a hot research topic,especially for bone-scaffold applications,because of the moderate degradation rate,good biocompatibility,and suitable mechanica... Additive manufacturing (AM) of zinc-based biodegradable materials is a hot research topic,especially for bone-scaffold applications,because of the moderate degradation rate,good biocompatibility,and suitable mechanical properties of these materials.Furthermore,AM enables the fabrication of complex internal structures suitable for implants.Literature on the AM of degradable zinc-based biomaterials from the Web of Science Core Collection was evaluated in this review.The bibliometric tool CiteSpace was used to analyze historical characteristics,evolving research topics,and emerging trends in this field.Our research results predict that the composition,processing techniques,in vitro biocompatibility,and manufacturing quality of biodegradable AM zinc-basedmaterials will continue to be hot topics in recent years.To address implant requirements,particularly for bone-repair materials,the mechanical properties of materials (including the resistance to degradation,creep,and aging),degradation rates,in-vivo biocompatibility,and specialized processing techniques that affect these properties (such as coating processes,heat treatments,material surface structures,and micros truc tural compositions) will become hot research topics in the future.We propose future research directions based on an in-depth analysis of four main topics of AM biodegradable zinc-based materials (manufacturing quality,material composition,unit configuration,and biocompatibility).The findings provide important guidance for future theoretical research and industrial development of AM zinc-based biomaterials. 展开更多
关键词 Zinc-based biomaterials Additive manufacturing Mechanical properties Corrosion BIOCOMPATIBILITY
原文传递
Advanced high-entropy alloys breaking the property limits of current materials 被引量:7
15
作者 Dongyue Li Peter K.Liaw +2 位作者 Lu Xie Yong Zhang Wenrui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期219-230,共12页
The growing need for stronger and more ductile structural materials has spurred an intense search for innovative,high-performance alloys.Traditionally,alloys face a pervasive trade-off:high strength often comes at the... The growing need for stronger and more ductile structural materials has spurred an intense search for innovative,high-performance alloys.Traditionally,alloys face a pervasive trade-off:high strength often comes at the expense of ductility and vice versa.The advent of high-entropy alloys(HEAs)offering both high strength and ductility has transformed this landscape.In this work,we discuss the deformation mechanisms of HEAs,examine the foundations of the strength-ductility trade-off,and explore approaches for designing HEAs to surmount this limitation.Furthermore,we analyze the factors that govern HEA-deformation performance,which in turn influence the HEA design.We also propose a perspective on future research directions concerning the mechanical behavior of HEAs,highlighting potential breakthroughs and novel strategies to advance the field. 展开更多
关键词 High-entropy alloy Strength-ductility Trade-off MICROSTRUCTURE Deformation mechanism
原文传递
Tunable Phase Structure of Side-chain Liquid Crystalline Polymers Enabled by Molecular Engineering of Dual Mesogenic Cores 被引量:2
16
作者 Wen-Huan Yao Lan-Sheng Liu +5 位作者 Jie Zhao Yan-Xia Wang An-Zhi Ma Zheng-Rui Ma Lan-Ying Zhang Ruo-Chen Lan 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第10期1459-1469,I0009,共12页
A series of novel side-chain liquid crystalline(SCLC)copolymers were synthesized by attaching two distinct mesogenic units,namely a chiral cholesteryl-based monomer(M1)and an achiral biphenyl-based monomer(M2),to a po... A series of novel side-chain liquid crystalline(SCLC)copolymers were synthesized by attaching two distinct mesogenic units,namely a chiral cholesteryl-based monomer(M1)and an achiral biphenyl-based monomer(M2),to a poly(3-mercaptopropylmethylsiloxane)(PMMS)backbone via thiol-ene click chemistry.The influence of side chain composition on the self-assembly behavior and phase structures of these SCLC copolymers was systematically investigated using different instrument.Results indicate that three distinct liquid crystalline phases and four unique molecular configurations were identified within the polymer series,with the emergence of the liquid crystalline phase being a synergistic outcome of the two distinct side chains.This study underscores the critical influence of side chain dimensions,rigidity,and spatial volume on the self-assembly structures and phase characteristics of liquid crystalline polymers,providing valuable insights for the rational design and development of advanced functional materials with tailored properties. 展开更多
关键词 Liquid crystalline copolymers SELF-ASSEMBLY Phase structure Chiral molar ratio
原文传递
Heterophase junction engineering-induced Co spin-state modulation of CoSe_(2) for large-current hydrogen evolution reaction 被引量:1
17
作者 Bao-Chai Xu Ya-Ping Miao +9 位作者 Min-Qin Mao Dong-Lian Li Song Xie Wei-Hong Jin Shu Xiao Jing Wen Zaenab Abd-Allah Zhi-Tian Liu Xiang Peng Paul K.Chu 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2660-2670,共11页
Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic C... Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting. 展开更多
关键词 Heterophase junction SPIN-STATE Hydrogen evolution reaction Large current electrochemical hydrogen production Water splitting
原文传递
Synthesis,characterizations,and applications of vacancies-containing materials for energy storage systems 被引量:3
18
作者 Jingjing Wang Yiguang Zhou +7 位作者 Junyi Li Lei Zhao Ying Zhu Yamei Wang Rui Wu Ying Wang Daniel John Blackwood Jun Song Chen 《DeCarbon》 2024年第1期67-80,共14页
Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can g... Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can generateabundant localized electrons and unsaturated cations,the incorporation of vacancies will significantly improvethe electrical conductivity,ion migration,and provides additional active sites of energy storage materials.Thisarticle systematically reviews different methods to generate oxygen,nitrogen,or selenium vacancies,and techniques to characterize these vacancies.We summarize the specific roles that vacancies play for the active materials in each type of energy storage devices.Additionally,we provide insights into the research progress andchallenges associated with the future development of vacancies technology in various energy storage systems. 展开更多
关键词 VACANCIES Energy storage systems Electronic structure CONDUCTIVITY Ion migration
在线阅读 下载PDF
Advanced strategies for solid electrolyte interface design with MOF materials 被引量:6
19
作者 Guolong Lu Ge Meng +5 位作者 Qian Liu Ligang Feng Jun Luo Xijun Liu Yang Luo Paul K.Chu 《Advanced Powder Materials》 2024年第1期114-143,共30页
Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern ... Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern energy storage devices.Lithium metal batteries(LMBs)have gained considerable attention due to their high energy density.Nonetheless,their use of liquid electrolytes raises safety concerns,including dendritic growth,electrode corrosion,and electrolyte decomposition.In light of these challenges,solid-state batteries(SSBs)have emerged as a highly promising next-generation energy storage solution by leveraging lithium metal as the anode to achieve improved safety and energy density.Metal organic frameworks(MOFs),characterized by their porous structure,ordered crystal frame,and customizable configuration,have garnered interest as potential materials for enhancing solid-state electrolytes(SSEs)in SSBs.The integration of MOFs into SSEs offers opportunities to enhance the electrochemical performance and optimize the interface between SSEs and electrodes.This is made possible by leveraging the high porosity,functionalized structures,and abundant open metal sites of MOFs.However,the rational design of high-performance MOF-based SSEs for high-energy Li metal SSBs(LMSSBs)remains a significant challenge.In this comprehensive review,we present an overview of recent advancements in MOF-based SSEs for LMSSBs,focusing on strategies for interface optimization and property enhancement.We categorize these SSEs into two main types:MOF-based quasi-solid-state electrolytes and MOF-based all solid-state electrolytes.Within these categories,various subtypes are identified based on the combination mode,additional materials,formation state,preparation method,and interface optimization measures employed.The review also highlights the existing challenges associated with MOF materials in SSBs applications and proposes potential solutions and future development prospects to guide the advancement of MOFs-based SSEs.By providing a comprehensive assessment of the applications of MOFs in LMSSBs,this review aims to offer valuable insights and guidance for the development of MOF-based SSEs,addressing the key issues faced by these materials in SSBs technology. 展开更多
关键词 Lithium metal solid-state batteries Metal organic frameworks Quasi-solid-state electrolytes All solid-state electrolytes Interface optimization strategy
在线阅读 下载PDF
Fabrication of heteroatom-doped cobalt oxide yolk-shell microsphere using recycled solution from waste materials and their excellent electrochemical properties as an anode material for lithium-ion batteries
20
作者 Yeong Beom Kim Chanho Kim +3 位作者 Seung-Hyun Kim Yun Chan Kang Dongju Lee Gi Dae Park 《Rare Metals》 SCIE EI CAS CSCD 2024年第10期4934-4947,共14页
Heteroatom-doped transition metal oxides have attracted great attention as advanced anode materials for lithium-ion batteries due to their high theoretical capacity and superior properties.However,the limited resource... Heteroatom-doped transition metal oxides have attracted great attention as advanced anode materials for lithium-ion batteries due to their high theoretical capacity and superior properties.However,the limited resource availability has led to a substantial rise in prices for valuable metals such as Ni and Co,posing a significant challenge for their application.To address this issue,recycling of these metals from waste materials have gained prominence,and particularly the recovery of Co has been mostly focused on its economic benefits.Herein,we introduced a novel recycling strategy for fabrication of heteroatomdoped CoO_(x)(comprising mainly Co_(3)O_(4)with a minor CoO phase)anode with a yolk–shell structure for lithium-ion batteries,by separating Co from cemented tungsten carbide waste.By employing a simple leaching process and subsequent spray pyrolysis,the yolk–shell structured microsphere comprising CoO_(x)was successfully synthesized.Moreover,the presence of other waste metals in the leachate facilitated multi-heteroatom doping during synthesis.Interestingly,the introduction of various dopants into CoO_(x)induced oxygen vacancy formation,thereby enhancing the electrochemical properties of the CoO_(x)anode.As a result,compared with the phase-pure(undoped)CoO_(x)yolk–shell,the heteroatom-doped CoO_(x)yolk–shell exhibited robust cycling stability(602 mAh·g^(-1)for 200 cycles at 1 A·g^(-1))and excellent rate capability(210 mAh·g^(-1)at 10 A·g^(-1)). 展开更多
关键词 Recycling Heteroatom doping Cobalt oxide Anode Lithium-ion batteries
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部