High-entropy materials(HEMs),an innovative class of materials with complex stoichiometry,have recently garnered consider-able attention in energy storage applications.While their multi-element compositions(five or mor...High-entropy materials(HEMs),an innovative class of materials with complex stoichiometry,have recently garnered consider-able attention in energy storage applications.While their multi-element compositions(five or more principal elements in nearly equiatom-ic proportions)confer unique advantages such as high configurational entropy,lattice distortion,and synergistic cocktail effects,the fun-damental understanding of structure-property relationships in battery systems remains fragmented across existing studies.This review ad-dresses critical research gaps by proposing a multidimensional design paradigm that systematically integrates synergistic mechanisms spanning cathodes,anodes,electrolytes,and electrocatalysts.We provide an in-depth analysis of HEMs’thermodynamic/kinetic stabiliza-tion principles and structure-regulated electrochemical properties,integrating and establishing quantitative correlations between entropy-driven phase stability and charge transport dynamics.By summarizing the performance benchmarking results of lithium/sodium/potassi-um-ion battery components,we reveal how entropy-mediated structural tailoring enhances cycle stability and ionic conductivity.Notably,we pioneer the systematic association of high-entropy effects to electrochemical interfaces,demonstrating their unique potential in stabil-izing solid-electrolyte interphases and suppressing transition metal dissolution.Emerging opportunities in machine learning-driven com-position screening and sustainable manufacturing are discussed alongside critical challenges,including performance variability metrics and cost-benefit analysis for industrial implementation.This work provides both fundamental insights and practical guidelines for advan-cing HEMs toward next-generation battery technologies.展开更多
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring...Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.展开更多
Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the emai...Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the email address from xingcai@stanford.edu to drtea1@wteao.com.Also,the corresponding author’s affiliation can be expanded.展开更多
Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,b...Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit(zT)without compromising electrical conductivity,using temperature-driven spin crossover.Our approach,supported by both theoretical and experimental evidence,is demonstrated through a case study of chromium doped-manganese telluride,but is not confined to this material and can be extended to other magnetic materials.By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover,we achieved a significant increase in thermopower,by approximately 136μV K^(-1),representing more than a 200%enhancement at elevated temperatures within the paramagnetic domain.Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower.These findings,validated by inelastic neutron scattering,X-ray photoemission spectroscopy,thermal transport,and energy conversion measurements,shed light on crucial material design parameters.We provide a comprehensive framework that analyzes the interplay between spin entropy,hopping transport,and magnon/paramagnon lifetimes,paving the way for the development of high-performance spin-driven thermoelectric materials.展开更多
Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimen...Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimentally demonstrate that integrating metamaterial design principles with the intrinsic features of natural materials can engineer thermal smart metadevices.Tunable extraordinary optical transmission like(EOT-like)phenomena have been achieved in the microwave regime using shape memory alloy(SMA).The strongly localized fields generated by designed metadevices,combined with the intense interference of incident waves,enhance transmission through subwavelength apertures.Leveraging the temperature-responsive properties of SMA,the morphology of the metadevice can be recontructed,thereby modifying its response to electromagnetic waves.The experiments demonstrated control over the operating frequency and transmission amplitude of EOT-like behavior,achieving a maximum transmission enhancement factor of 126.Furthermore,the metadevices with modular design enable the realization of multiple functions with independent control have been demonstrated.The proposed SMA-based metamaterials offer advantages in terms of miniaturization,easy processing,and high design flexibility.They may have potential applications in microwave devices requiring temperature control,such as sensing and monitoring.展开更多
The advancement of materials has played a pivotal role in the advancement of human civilization,and the emergence of artificial intelligence(AI)-empowered materials science heralds a new era with substantial potential...The advancement of materials has played a pivotal role in the advancement of human civilization,and the emergence of artificial intelligence(AI)-empowered materials science heralds a new era with substantial potential to tackle the escalating challenges related to energy,environment,and biomedical concerns in a sustainable manner.The exploration and development of sustainable materials are poised to assume a critical role in attaining technologically advanced solutions that are environmentally friendly,energy-efficient,and conducive to human well-being.This review provides a comprehensive overview of the current scholarly progress in artificial intelligence-powered materials science and its cutting-edge applications.We anticipate that AI technology will be extensively utilized in material research and development,thereby expediting the growth and implementation of novel materials.AI will serve as a catalyst for materials innovation,and in turn,advancements in materials innovation will further enhance the capabilities of AI and AI-powered materials science.Through the synergistic collaboration between AI and materials science,we stand to realize a future propelled by advanced AI-powered materials.展开更多
High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfa...High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfacial phenomena in ironmaking and steelmaking as well as phase transformations during heat treatment of metallic materials.The pioneering work on the application of HTCLSM dates back to twenty-five years ago,to directly observe the crystallization of undercooled steel melt.展开更多
For over a decade,regenerative engineering has been defined as the convergence of advanced materials sciences,stem cell sciences,physics,developmental biology,and clinical translation for the regeneration of complex t...For over a decade,regenerative engineering has been defined as the convergence of advanced materials sciences,stem cell sciences,physics,developmental biology,and clinical translation for the regeneration of complex tissues.Recently,the field has made major strides because of new efforts made possible by the utilization of another growing field:artificial intelligence.However,there is currently no term to describe the use of artificial intelligence for regenerative engineering.Therefore,we hereby present a new term,“Regenerative Engineering AI”,which cohesively describes the interweaving of artificial intelligence into the framework of regenerative engineering rather than using it merely as a tool.As the first to define the term,regenerative engineering AI is the interdisciplinary integration of artificial intelligence and machine learning within the fundamental core of regenerative engineering to advance its principles and goals.It represents the subsequent synergetic relationship between the two that allow for multiplex solutions toward human limb regeneration in a manner different from individual fields and artificial intelligence alone.Establishing such a term creates a unique and unified space to consolidate the work of growing fields into one coherent discipline under a common goal and language,fostering interdisciplinary collaboration and promoting focused research and innovation.展开更多
Layered manganese dioxide(δ-MnO_(2))is a promising cathode material for aqueous zinc-ion batteries(AZIBs)due to its high theoretical capacity,high operating voltage,and low cost.However,its practical application face...Layered manganese dioxide(δ-MnO_(2))is a promising cathode material for aqueous zinc-ion batteries(AZIBs)due to its high theoretical capacity,high operating voltage,and low cost.However,its practical application faces challenges,such as low electronic conductivity,sluggish diffusion kinetics,and severe dissolution of Mn^(2+).In this study,we developed a δ-MnO_(2) coated with a 2-methylimidazole(δ-MnO_(2)@2-ML)hybrid cathode.Density functional theory(DFT)calculations indicate that 2-ML can be integrated into δ-MnO_(2) through both pre-intercalation and surface coating,with thermodynamically favorable outcomes.This modification expands the interlayer spacing of δ-MnO_(2) and generates Mn-N bonds on the surface,enhancing Zn^(2+)accommodation and diffusion kinetics as well as stabilizing surface Mn sites.The experimentally prepared δ-MnO_(2)@2-ML cathode,as predicted by DFT,features both 2-ML pre-intercalation and surface coating,providing more zinc-ion insertion sites and improved structural stability.Furthermore,X-ray diffraction shows the expanded interlayer spacing,which effectively buffers local electrostatic interactions,leading to an enhanced Zn^(2+)diffusion rate.Consequently,the optimized cathode(δ-MnO_(2)@2-ML)presents improved electrochemical performance and stability,and the fabricated AZIBs exhibit a high specific capacity(309.5mAh/g at 0.1 A/g),superior multiplicative performance(137.6mAh/g at 1 A/g),and impressive capacity retention(80%after 1350 cycles at 1 A/g).These results surpass the performance of most manganese-based and vanadium-based cathode materials reported to date.This dual-modulation strategy,combining interlayer engineering and interface optimization,offers a straightforward and scalable approach,potentially advancing the commercial viability of low-cost,high-performance AZIBs.展开更多
Magnetoresistive random access memory(MRAM)is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution,particularly in cache functions within circ...Magnetoresistive random access memory(MRAM)is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution,particularly in cache functions within circuits.Although MRAM has achieved mass production,its manufacturing process still remains challenging,resulting in only a few semiconductor companies dominating its production.In this review,we delve into the materials,processes,and devices used in MRAM,focusing on both the widely adopted spin transfer torque MRAM and the next-generation spin-orbit torque MRAM.We provide an overview of their operational mechanisms and manufacturing technologies.Furthermore,we outline the major hurdles faced in MRAM manufacturing and propose potential solutions in detail.Then,the applications of MRAM in artificial intelligent hardware are introduced.Finally,we present an outlook on the future development and applications of MRAM.展开更多
Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To addr...Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability.展开更多
High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that ...High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that allow for the development of advanced electrocatalysts for renewable energy conversion systems.The highentropy effect,crystal dislocations,cocktail effect,and slow diffusion in high-entropy layered double hydroxides(HE-LDHs)and amorphous materials(HE-AMs)have all been shown to boost electrocatalytic water oxidation performance significantly.These materials exhibit remarkable activity and stability in both alkaline and acidic conditions.HE-AMs,in particular,benefit from a variety of defects,including coordinatively unsaturated sites and loosely connected atoms,which are critical to their improved catalytic capabilities.HEMs engineering and precise nanostructure control can address the low intrinsic activity,restricted active sites,and poor conductivity of binary and ternary amorphous and LDH catalysts.This study discusses current advances in HE-LDHs and HE-AMs for water electrolysis,including synthesis methods,structural features,active site identification by DFT calculations,and their applications in water electrocatalysis.The presentation also covers potential problems and future directions for developing these materials in energy conversion device systems.展开更多
Device fabrication is increasing with the importance of functional materials for industrial applications.To fulfil increasing demands,rare earth elementbased materials have become important.In particular,lanthanum(La)...Device fabrication is increasing with the importance of functional materials for industrial applications.To fulfil increasing demands,rare earth elementbased materials have become important.In particular,lanthanum(La) and La-based materials have garnered attention in recent years due to their versatile properties and wide range of potential applications.This critical review provides a comprehensive overview of the advancements in the utilization of La and its compounds across various fields.In the realm of sensing and biosensing,La-based materials exhibit better sensitivity and selectivity,indicating their suitability for detecting environmental pollutants and biomolecules.The review also explores their role in supercapacitors,where their unique electrochemical properties contribute to enhanced performance and stability.Furthermore,the catalytic properties of La compounds are highlighted in water-splitting applications,emphasizing their efficiency in oxygen and hydrogen production.The biomedical applications of Labased materials are also examined,focusing on their biocompatibility and potential in drug delivery and medical imaging.This review aims to provide a critical analysis of the current state of research,identify challenges,and suggest future directions for the development and application of La and La-based materials in these diverse fields.展开更多
Additive manufacturing (AM) of zinc-based biodegradable materials is a hot research topic,especially for bone-scaffold applications,because of the moderate degradation rate,good biocompatibility,and suitable mechanica...Additive manufacturing (AM) of zinc-based biodegradable materials is a hot research topic,especially for bone-scaffold applications,because of the moderate degradation rate,good biocompatibility,and suitable mechanical properties of these materials.Furthermore,AM enables the fabrication of complex internal structures suitable for implants.Literature on the AM of degradable zinc-based biomaterials from the Web of Science Core Collection was evaluated in this review.The bibliometric tool CiteSpace was used to analyze historical characteristics,evolving research topics,and emerging trends in this field.Our research results predict that the composition,processing techniques,in vitro biocompatibility,and manufacturing quality of biodegradable AM zinc-basedmaterials will continue to be hot topics in recent years.To address implant requirements,particularly for bone-repair materials,the mechanical properties of materials (including the resistance to degradation,creep,and aging),degradation rates,in-vivo biocompatibility,and specialized processing techniques that affect these properties (such as coating processes,heat treatments,material surface structures,and micros truc tural compositions) will become hot research topics in the future.We propose future research directions based on an in-depth analysis of four main topics of AM biodegradable zinc-based materials (manufacturing quality,material composition,unit configuration,and biocompatibility).The findings provide important guidance for future theoretical research and industrial development of AM zinc-based biomaterials.展开更多
The growing need for stronger and more ductile structural materials has spurred an intense search for innovative,high-performance alloys.Traditionally,alloys face a pervasive trade-off:high strength often comes at the...The growing need for stronger and more ductile structural materials has spurred an intense search for innovative,high-performance alloys.Traditionally,alloys face a pervasive trade-off:high strength often comes at the expense of ductility and vice versa.The advent of high-entropy alloys(HEAs)offering both high strength and ductility has transformed this landscape.In this work,we discuss the deformation mechanisms of HEAs,examine the foundations of the strength-ductility trade-off,and explore approaches for designing HEAs to surmount this limitation.Furthermore,we analyze the factors that govern HEA-deformation performance,which in turn influence the HEA design.We also propose a perspective on future research directions concerning the mechanical behavior of HEAs,highlighting potential breakthroughs and novel strategies to advance the field.展开更多
A series of novel side-chain liquid crystalline(SCLC)copolymers were synthesized by attaching two distinct mesogenic units,namely a chiral cholesteryl-based monomer(M1)and an achiral biphenyl-based monomer(M2),to a po...A series of novel side-chain liquid crystalline(SCLC)copolymers were synthesized by attaching two distinct mesogenic units,namely a chiral cholesteryl-based monomer(M1)and an achiral biphenyl-based monomer(M2),to a poly(3-mercaptopropylmethylsiloxane)(PMMS)backbone via thiol-ene click chemistry.The influence of side chain composition on the self-assembly behavior and phase structures of these SCLC copolymers was systematically investigated using different instrument.Results indicate that three distinct liquid crystalline phases and four unique molecular configurations were identified within the polymer series,with the emergence of the liquid crystalline phase being a synergistic outcome of the two distinct side chains.This study underscores the critical influence of side chain dimensions,rigidity,and spatial volume on the self-assembly structures and phase characteristics of liquid crystalline polymers,providing valuable insights for the rational design and development of advanced functional materials with tailored properties.展开更多
Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic C...Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.展开更多
Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can g...Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can generateabundant localized electrons and unsaturated cations,the incorporation of vacancies will significantly improvethe electrical conductivity,ion migration,and provides additional active sites of energy storage materials.Thisarticle systematically reviews different methods to generate oxygen,nitrogen,or selenium vacancies,and techniques to characterize these vacancies.We summarize the specific roles that vacancies play for the active materials in each type of energy storage devices.Additionally,we provide insights into the research progress andchallenges associated with the future development of vacancies technology in various energy storage systems.展开更多
Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern ...Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern energy storage devices.Lithium metal batteries(LMBs)have gained considerable attention due to their high energy density.Nonetheless,their use of liquid electrolytes raises safety concerns,including dendritic growth,electrode corrosion,and electrolyte decomposition.In light of these challenges,solid-state batteries(SSBs)have emerged as a highly promising next-generation energy storage solution by leveraging lithium metal as the anode to achieve improved safety and energy density.Metal organic frameworks(MOFs),characterized by their porous structure,ordered crystal frame,and customizable configuration,have garnered interest as potential materials for enhancing solid-state electrolytes(SSEs)in SSBs.The integration of MOFs into SSEs offers opportunities to enhance the electrochemical performance and optimize the interface between SSEs and electrodes.This is made possible by leveraging the high porosity,functionalized structures,and abundant open metal sites of MOFs.However,the rational design of high-performance MOF-based SSEs for high-energy Li metal SSBs(LMSSBs)remains a significant challenge.In this comprehensive review,we present an overview of recent advancements in MOF-based SSEs for LMSSBs,focusing on strategies for interface optimization and property enhancement.We categorize these SSEs into two main types:MOF-based quasi-solid-state electrolytes and MOF-based all solid-state electrolytes.Within these categories,various subtypes are identified based on the combination mode,additional materials,formation state,preparation method,and interface optimization measures employed.The review also highlights the existing challenges associated with MOF materials in SSBs applications and proposes potential solutions and future development prospects to guide the advancement of MOFs-based SSEs.By providing a comprehensive assessment of the applications of MOFs in LMSSBs,this review aims to offer valuable insights and guidance for the development of MOF-based SSEs,addressing the key issues faced by these materials in SSBs technology.展开更多
Heteroatom-doped transition metal oxides have attracted great attention as advanced anode materials for lithium-ion batteries due to their high theoretical capacity and superior properties.However,the limited resource...Heteroatom-doped transition metal oxides have attracted great attention as advanced anode materials for lithium-ion batteries due to their high theoretical capacity and superior properties.However,the limited resource availability has led to a substantial rise in prices for valuable metals such as Ni and Co,posing a significant challenge for their application.To address this issue,recycling of these metals from waste materials have gained prominence,and particularly the recovery of Co has been mostly focused on its economic benefits.Herein,we introduced a novel recycling strategy for fabrication of heteroatomdoped CoO_(x)(comprising mainly Co_(3)O_(4)with a minor CoO phase)anode with a yolk–shell structure for lithium-ion batteries,by separating Co from cemented tungsten carbide waste.By employing a simple leaching process and subsequent spray pyrolysis,the yolk–shell structured microsphere comprising CoO_(x)was successfully synthesized.Moreover,the presence of other waste metals in the leachate facilitated multi-heteroatom doping during synthesis.Interestingly,the introduction of various dopants into CoO_(x)induced oxygen vacancy formation,thereby enhancing the electrochemical properties of the CoO_(x)anode.As a result,compared with the phase-pure(undoped)CoO_(x)yolk–shell,the heteroatom-doped CoO_(x)yolk–shell exhibited robust cycling stability(602 mAh·g^(-1)for 200 cycles at 1 A·g^(-1))and excellent rate capability(210 mAh·g^(-1)at 10 A·g^(-1)).展开更多
基金supported by National Natural Science Foundation of China(No.5227130161).
文摘High-entropy materials(HEMs),an innovative class of materials with complex stoichiometry,have recently garnered consider-able attention in energy storage applications.While their multi-element compositions(five or more principal elements in nearly equiatom-ic proportions)confer unique advantages such as high configurational entropy,lattice distortion,and synergistic cocktail effects,the fun-damental understanding of structure-property relationships in battery systems remains fragmented across existing studies.This review ad-dresses critical research gaps by proposing a multidimensional design paradigm that systematically integrates synergistic mechanisms spanning cathodes,anodes,electrolytes,and electrocatalysts.We provide an in-depth analysis of HEMs’thermodynamic/kinetic stabiliza-tion principles and structure-regulated electrochemical properties,integrating and establishing quantitative correlations between entropy-driven phase stability and charge transport dynamics.By summarizing the performance benchmarking results of lithium/sodium/potassi-um-ion battery components,we reveal how entropy-mediated structural tailoring enhances cycle stability and ionic conductivity.Notably,we pioneer the systematic association of high-entropy effects to electrochemical interfaces,demonstrating their unique potential in stabil-izing solid-electrolyte interphases and suppressing transition metal dissolution.Emerging opportunities in machine learning-driven com-position screening and sustainable manufacturing are discussed alongside critical challenges,including performance variability metrics and cost-benefit analysis for industrial implementation.This work provides both fundamental insights and practical guidelines for advan-cing HEMs toward next-generation battery technologies.
基金supported by the National Key Research and Development Program(No.2022YFE0122000)National Natural Science Foundation of China under Grant Nos.52234009,52274383,52222409,and 52201113。
文摘Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.
文摘Correction to:Nano-Micro Letters(2025)17:135 https://doi.org/10.1007/s40820-024-01634-8 Following publication of the original article[1],the authors reported that the corresponding author would like to update the email address from xingcai@stanford.edu to drtea1@wteao.com.Also,the corresponding author’s affiliation can be expanded.
基金funding support by the National Science Foundation(NSF)under grant numbers CBET-2110603the Air Force Office of Scientific Research(AFOSR)under contract number FA9550-12-1-0225supported by the State of North Carolina and the National Science Foundation(award number ECCS-2025064).
文摘Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit(zT)without compromising electrical conductivity,using temperature-driven spin crossover.Our approach,supported by both theoretical and experimental evidence,is demonstrated through a case study of chromium doped-manganese telluride,but is not confined to this material and can be extended to other magnetic materials.By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover,we achieved a significant increase in thermopower,by approximately 136μV K^(-1),representing more than a 200%enhancement at elevated temperatures within the paramagnetic domain.Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower.These findings,validated by inelastic neutron scattering,X-ray photoemission spectroscopy,thermal transport,and energy conversion measurements,shed light on crucial material design parameters.We provide a comprehensive framework that analyzes the interplay between spin entropy,hopping transport,and magnon/paramagnon lifetimes,paving the way for the development of high-performance spin-driven thermoelectric materials.
基金the financial support from the National Key R&D Program of China (Nos. 2023YFB3811400, 2022YFB3806000)the National Natural Science Foundation of China (Nos. 12074314, 52202370, 52332006)+3 种基金the Aeronautical Science Foundation of China (No. 20230018053007)the Science and Technology New Star Program of Shaanxi Province (No. 2023KJXX-148)the Fundamental Research Funds for the Central UniversitiesChina Postdoctoral Science Foundation (No. 2023T160359)
文摘Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials,making them promising candidates for use in smart tunable device.Here,we propose and experimentally demonstrate that integrating metamaterial design principles with the intrinsic features of natural materials can engineer thermal smart metadevices.Tunable extraordinary optical transmission like(EOT-like)phenomena have been achieved in the microwave regime using shape memory alloy(SMA).The strongly localized fields generated by designed metadevices,combined with the intense interference of incident waves,enhance transmission through subwavelength apertures.Leveraging the temperature-responsive properties of SMA,the morphology of the metadevice can be recontructed,thereby modifying its response to electromagnetic waves.The experiments demonstrated control over the operating frequency and transmission amplitude of EOT-like behavior,achieving a maximum transmission enhancement factor of 126.Furthermore,the metadevices with modular design enable the realization of multiple functions with independent control have been demonstrated.The proposed SMA-based metamaterials offer advantages in terms of miniaturization,easy processing,and high design flexibility.They may have potential applications in microwave devices requiring temperature control,such as sensing and monitoring.
基金the support from Stanfordthe support from CUHKHKU
文摘The advancement of materials has played a pivotal role in the advancement of human civilization,and the emergence of artificial intelligence(AI)-empowered materials science heralds a new era with substantial potential to tackle the escalating challenges related to energy,environment,and biomedical concerns in a sustainable manner.The exploration and development of sustainable materials are poised to assume a critical role in attaining technologically advanced solutions that are environmentally friendly,energy-efficient,and conducive to human well-being.This review provides a comprehensive overview of the current scholarly progress in artificial intelligence-powered materials science and its cutting-edge applications.We anticipate that AI technology will be extensively utilized in material research and development,thereby expediting the growth and implementation of novel materials.AI will serve as a catalyst for materials innovation,and in turn,advancements in materials innovation will further enhance the capabilities of AI and AI-powered materials science.Through the synergistic collaboration between AI and materials science,we stand to realize a future propelled by advanced AI-powered materials.
文摘High-temperature confocal laser scanning microscopy(HT-CLSM)is a robust characterization tool which can provide in situ real-time studies of materials processing.This facility has been applied in investigating interfacial phenomena in ironmaking and steelmaking as well as phase transformations during heat treatment of metallic materials.The pioneering work on the application of HTCLSM dates back to twenty-five years ago,to directly observe the crystallization of undercooled steel melt.
文摘For over a decade,regenerative engineering has been defined as the convergence of advanced materials sciences,stem cell sciences,physics,developmental biology,and clinical translation for the regeneration of complex tissues.Recently,the field has made major strides because of new efforts made possible by the utilization of another growing field:artificial intelligence.However,there is currently no term to describe the use of artificial intelligence for regenerative engineering.Therefore,we hereby present a new term,“Regenerative Engineering AI”,which cohesively describes the interweaving of artificial intelligence into the framework of regenerative engineering rather than using it merely as a tool.As the first to define the term,regenerative engineering AI is the interdisciplinary integration of artificial intelligence and machine learning within the fundamental core of regenerative engineering to advance its principles and goals.It represents the subsequent synergetic relationship between the two that allow for multiplex solutions toward human limb regeneration in a manner different from individual fields and artificial intelligence alone.Establishing such a term creates a unique and unified space to consolidate the work of growing fields into one coherent discipline under a common goal and language,fostering interdisciplinary collaboration and promoting focused research and innovation.
基金supported by the the National Natural Science Foundation of China(52203303)the Shenzhen Science and Technology Program(SGDX20211123151002003 and GJHZ20220913142812025)+1 种基金the International Partnership Program of the Chinese Academy of Sciences(321GJHZ2023189FN)the SIAT International Joint Lab(E5G108).
文摘Layered manganese dioxide(δ-MnO_(2))is a promising cathode material for aqueous zinc-ion batteries(AZIBs)due to its high theoretical capacity,high operating voltage,and low cost.However,its practical application faces challenges,such as low electronic conductivity,sluggish diffusion kinetics,and severe dissolution of Mn^(2+).In this study,we developed a δ-MnO_(2) coated with a 2-methylimidazole(δ-MnO_(2)@2-ML)hybrid cathode.Density functional theory(DFT)calculations indicate that 2-ML can be integrated into δ-MnO_(2) through both pre-intercalation and surface coating,with thermodynamically favorable outcomes.This modification expands the interlayer spacing of δ-MnO_(2) and generates Mn-N bonds on the surface,enhancing Zn^(2+)accommodation and diffusion kinetics as well as stabilizing surface Mn sites.The experimentally prepared δ-MnO_(2)@2-ML cathode,as predicted by DFT,features both 2-ML pre-intercalation and surface coating,providing more zinc-ion insertion sites and improved structural stability.Furthermore,X-ray diffraction shows the expanded interlayer spacing,which effectively buffers local electrostatic interactions,leading to an enhanced Zn^(2+)diffusion rate.Consequently,the optimized cathode(δ-MnO_(2)@2-ML)presents improved electrochemical performance and stability,and the fabricated AZIBs exhibit a high specific capacity(309.5mAh/g at 0.1 A/g),superior multiplicative performance(137.6mAh/g at 1 A/g),and impressive capacity retention(80%after 1350 cycles at 1 A/g).These results surpass the performance of most manganese-based and vanadium-based cathode materials reported to date.This dual-modulation strategy,combining interlayer engineering and interface optimization,offers a straightforward and scalable approach,potentially advancing the commercial viability of low-cost,high-performance AZIBs.
基金supported in part by the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)under Grant 2020118Beijing Nova Program under Grant 20230484358Beijing Superstring Academy of Memory Technology:under Grant No.E2DF06X003。
文摘Magnetoresistive random access memory(MRAM)is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution,particularly in cache functions within circuits.Although MRAM has achieved mass production,its manufacturing process still remains challenging,resulting in only a few semiconductor companies dominating its production.In this review,we delve into the materials,processes,and devices used in MRAM,focusing on both the widely adopted spin transfer torque MRAM and the next-generation spin-orbit torque MRAM.We provide an overview of their operational mechanisms and manufacturing technologies.Furthermore,we outline the major hurdles faced in MRAM manufacturing and propose potential solutions in detail.Then,the applications of MRAM in artificial intelligent hardware are introduced.Finally,we present an outlook on the future development and applications of MRAM.
基金supported by the National Natural Science Foundation of China(Nos.52122408,52071023)the Program for Science&Technology Innovation Talents in the University of Henan Province(No.22HASTIT1006)+2 种基金the Program for Central Plains Talents(No.ZYYCYU202012172)the Ministry of Education,Singapore(No.RG70/20)the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,Henan University of Science and Technology(No.HKDNM201906).
文摘Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(No.52021004)the Funds for Chongqing Talents Plan(No.CQYC2021059563)+1 种基金the Fundamental Research Funds for the Central Universities(No.2021CDJQY-027)the National Natural Science Foundation of China(No.52206089).
文摘High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that allow for the development of advanced electrocatalysts for renewable energy conversion systems.The highentropy effect,crystal dislocations,cocktail effect,and slow diffusion in high-entropy layered double hydroxides(HE-LDHs)and amorphous materials(HE-AMs)have all been shown to boost electrocatalytic water oxidation performance significantly.These materials exhibit remarkable activity and stability in both alkaline and acidic conditions.HE-AMs,in particular,benefit from a variety of defects,including coordinatively unsaturated sites and loosely connected atoms,which are critical to their improved catalytic capabilities.HEMs engineering and precise nanostructure control can address the low intrinsic activity,restricted active sites,and poor conductivity of binary and ternary amorphous and LDH catalysts.This study discusses current advances in HE-LDHs and HE-AMs for water electrolysis,including synthesis methods,structural features,active site identification by DFT calculations,and their applications in water electrocatalysis.The presentation also covers potential problems and future directions for developing these materials in energy conversion device systems.
基金financially supported by the Nanomaterial Technology Development Program(Nos.RS-202300234581)the Basic Science Research Program(Nos.2020-NR049321,RS-2019-NR040077)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT,&Future Planning and the Ministry of Education
文摘Device fabrication is increasing with the importance of functional materials for industrial applications.To fulfil increasing demands,rare earth elementbased materials have become important.In particular,lanthanum(La) and La-based materials have garnered attention in recent years due to their versatile properties and wide range of potential applications.This critical review provides a comprehensive overview of the advancements in the utilization of La and its compounds across various fields.In the realm of sensing and biosensing,La-based materials exhibit better sensitivity and selectivity,indicating their suitability for detecting environmental pollutants and biomolecules.The review also explores their role in supercapacitors,where their unique electrochemical properties contribute to enhanced performance and stability.Furthermore,the catalytic properties of La compounds are highlighted in water-splitting applications,emphasizing their efficiency in oxygen and hydrogen production.The biomedical applications of Labased materials are also examined,focusing on their biocompatibility and potential in drug delivery and medical imaging.This review aims to provide a critical analysis of the current state of research,identify challenges,and suggest future directions for the development and application of La and La-based materials in these diverse fields.
基金financially supported by grants from the National Key Technology R&D Program of China(No.2023YFB3810100)the National Natural Science Foundation of China(Nos.32471366,12302406,82270535)+2 种基金Science and Technology Innovation Project of JinFeng LaboratoryChongqingChina(No.jfkyjf202203001)
文摘Additive manufacturing (AM) of zinc-based biodegradable materials is a hot research topic,especially for bone-scaffold applications,because of the moderate degradation rate,good biocompatibility,and suitable mechanical properties of these materials.Furthermore,AM enables the fabrication of complex internal structures suitable for implants.Literature on the AM of degradable zinc-based biomaterials from the Web of Science Core Collection was evaluated in this review.The bibliometric tool CiteSpace was used to analyze historical characteristics,evolving research topics,and emerging trends in this field.Our research results predict that the composition,processing techniques,in vitro biocompatibility,and manufacturing quality of biodegradable AM zinc-basedmaterials will continue to be hot topics in recent years.To address implant requirements,particularly for bone-repair materials,the mechanical properties of materials (including the resistance to degradation,creep,and aging),degradation rates,in-vivo biocompatibility,and specialized processing techniques that affect these properties (such as coating processes,heat treatments,material surface structures,and micros truc tural compositions) will become hot research topics in the future.We propose future research directions based on an in-depth analysis of four main topics of AM biodegradable zinc-based materials (manufacturing quality,material composition,unit configuration,and biocompatibility).The findings provide important guidance for future theoretical research and industrial development of AM zinc-based biomaterials.
基金the financial support from the National Natural Science Foundation of China(Nos.52101189 and 52273280)the National Key R&D Program of China(No.2020YFA0405700)+3 种基金The present work was also supported by the Chinese Postdoctoral Science Foundation(No.2020M680343)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-050A1)PKL thanks the support from the National Science Foundation(Nos.DMR-1611180,1809640,and 2226508)the Army Research Office(Nos.W911NF-13-1-0438 and W911NF-19-2-0049).
文摘The growing need for stronger and more ductile structural materials has spurred an intense search for innovative,high-performance alloys.Traditionally,alloys face a pervasive trade-off:high strength often comes at the expense of ductility and vice versa.The advent of high-entropy alloys(HEAs)offering both high strength and ductility has transformed this landscape.In this work,we discuss the deformation mechanisms of HEAs,examine the foundations of the strength-ductility trade-off,and explore approaches for designing HEAs to surmount this limitation.Furthermore,we analyze the factors that govern HEA-deformation performance,which in turn influence the HEA design.We also propose a perspective on future research directions concerning the mechanical behavior of HEAs,highlighting potential breakthroughs and novel strategies to advance the field.
基金financially supported by the National Natural Science Foundation of China(Nos.52263033 and 52202081)China Postdoctoral Science Foundation Funded Project(No.2021M690954)+3 种基金Natural Science Foundation of Gansu Province(No.20JR10RA105)the Natural Science Foundation of Hunan Province(No.2022JJ30152)the graduate research funding project of Northwest Normal University(No.2023KYZZ-S157)Natural Science Foundation of Jiangxi Province,China(No.20232BAB204030)。
文摘A series of novel side-chain liquid crystalline(SCLC)copolymers were synthesized by attaching two distinct mesogenic units,namely a chiral cholesteryl-based monomer(M1)and an achiral biphenyl-based monomer(M2),to a poly(3-mercaptopropylmethylsiloxane)(PMMS)backbone via thiol-ene click chemistry.The influence of side chain composition on the self-assembly behavior and phase structures of these SCLC copolymers was systematically investigated using different instrument.Results indicate that three distinct liquid crystalline phases and four unique molecular configurations were identified within the polymer series,with the emergence of the liquid crystalline phase being a synergistic outcome of the two distinct side chains.This study underscores the critical influence of side chain dimensions,rigidity,and spatial volume on the self-assembly structures and phase characteristics of liquid crystalline polymers,providing valuable insights for the rational design and development of advanced functional materials with tailored properties.
基金financially supported by the National Natural Science Foundation of China(Nos.52002294 and 52202111)the Key Research and Development Program of Hubei Province(No.2021BAA208)+3 种基金the Knowledge Innovation Program of Wuhan-Shuguang Project(No.2022010801020364)City University of Hong Kong Donation Research Grant(No.DON-RMG 9229021)City University of Hong Kong Donation Grant(No.9220061)City University of Hong Kong Strategic Research Grant(SRG)(No.7005505)。
文摘Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.
基金supported by the National Natural Science Foundation of China(No.52372176)Sichuan Science and Technology Program(2023YFH0026).
文摘Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can generateabundant localized electrons and unsaturated cations,the incorporation of vacancies will significantly improvethe electrical conductivity,ion migration,and provides additional active sites of energy storage materials.Thisarticle systematically reviews different methods to generate oxygen,nitrogen,or selenium vacancies,and techniques to characterize these vacancies.We summarize the specific roles that vacancies play for the active materials in each type of energy storage devices.Additionally,we provide insights into the research progress andchallenges associated with the future development of vacancies technology in various energy storage systems.
基金financially supported by the National Natural Science Foundation of China(22075211 and 51971157)City University of Hong Kong Donation Research Grant(DON-RMG No.9229021)Innovation Project of Guangxi Graduate Education(YCBZ2023009).
文摘Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern energy storage devices.Lithium metal batteries(LMBs)have gained considerable attention due to their high energy density.Nonetheless,their use of liquid electrolytes raises safety concerns,including dendritic growth,electrode corrosion,and electrolyte decomposition.In light of these challenges,solid-state batteries(SSBs)have emerged as a highly promising next-generation energy storage solution by leveraging lithium metal as the anode to achieve improved safety and energy density.Metal organic frameworks(MOFs),characterized by their porous structure,ordered crystal frame,and customizable configuration,have garnered interest as potential materials for enhancing solid-state electrolytes(SSEs)in SSBs.The integration of MOFs into SSEs offers opportunities to enhance the electrochemical performance and optimize the interface between SSEs and electrodes.This is made possible by leveraging the high porosity,functionalized structures,and abundant open metal sites of MOFs.However,the rational design of high-performance MOF-based SSEs for high-energy Li metal SSBs(LMSSBs)remains a significant challenge.In this comprehensive review,we present an overview of recent advancements in MOF-based SSEs for LMSSBs,focusing on strategies for interface optimization and property enhancement.We categorize these SSEs into two main types:MOF-based quasi-solid-state electrolytes and MOF-based all solid-state electrolytes.Within these categories,various subtypes are identified based on the combination mode,additional materials,formation state,preparation method,and interface optimization measures employed.The review also highlights the existing challenges associated with MOF materials in SSBs applications and proposes potential solutions and future development prospects to guide the advancement of MOFs-based SSEs.By providing a comprehensive assessment of the applications of MOFs in LMSSBs,this review aims to offer valuable insights and guidance for the development of MOF-based SSEs,addressing the key issues faced by these materials in SSBs technology.
基金financially supported by the National Research Foundation of Korea(NRF)from the Korea Government(MEST,No.NRF-2022R1F1A1070886MSIT,No.RS2023-00217581)the Commercialization Promotion Agency for R&D Outcomes(COMPA)from the Korea Government(MEST,No.1711175258)。
文摘Heteroatom-doped transition metal oxides have attracted great attention as advanced anode materials for lithium-ion batteries due to their high theoretical capacity and superior properties.However,the limited resource availability has led to a substantial rise in prices for valuable metals such as Ni and Co,posing a significant challenge for their application.To address this issue,recycling of these metals from waste materials have gained prominence,and particularly the recovery of Co has been mostly focused on its economic benefits.Herein,we introduced a novel recycling strategy for fabrication of heteroatomdoped CoO_(x)(comprising mainly Co_(3)O_(4)with a minor CoO phase)anode with a yolk–shell structure for lithium-ion batteries,by separating Co from cemented tungsten carbide waste.By employing a simple leaching process and subsequent spray pyrolysis,the yolk–shell structured microsphere comprising CoO_(x)was successfully synthesized.Moreover,the presence of other waste metals in the leachate facilitated multi-heteroatom doping during synthesis.Interestingly,the introduction of various dopants into CoO_(x)induced oxygen vacancy formation,thereby enhancing the electrochemical properties of the CoO_(x)anode.As a result,compared with the phase-pure(undoped)CoO_(x)yolk–shell,the heteroatom-doped CoO_(x)yolk–shell exhibited robust cycling stability(602 mAh·g^(-1)for 200 cycles at 1 A·g^(-1))and excellent rate capability(210 mAh·g^(-1)at 10 A·g^(-1)).