Purpose:This paper presents a new semi-automatic methodology for identifying inter-actor relationships by discerning viewpoints in non-social,political textual corpora.Although previous research has successfully disce...Purpose:This paper presents a new semi-automatic methodology for identifying inter-actor relationships by discerning viewpoints in non-social,political textual corpora.Although previous research has successfully discerned viewpoints,biases,and affiliations based on textual features,the task of relationship analysis in the absence of interactional data remains unaddressed.Design/methodology/approach:We introduce a new paradigm for topic representation as a dynamic,continuous,multi-viewpoint spectrum based on the representation of viewpoints as vectors that capture common topical themes.As a proof of concept,we applied this paradigm to scrutinize the inter-state relationships reflected in the speeches of the UN General Assembly Debate Corpus(UNGDC).Findings:The proposed paradigm effectively identifies discursive trends in UNGDC.Our analysis reveals common attitudes towards the topic and their prominence among different groups of actors and facilitates the analysis of relationships between actors through a quantitative representation of viewpoint similarity.The method also successfully captured temporal shifts in viewpoints and overall discourse trends,correlating with major geopolitical events.Research limitations:One limitation of this study is the method’s sensitivity to data sparsity,which can skew viewpoint representations in cases of low topic involvement.Practical implications:The proposed paradigm can be utilized by scholars in political science and other domains as a tool for semi-automated unsupervised textual analysis of various non-social textual sources,enabling the discovery of latent relationships between actors and the modeling of viewpoints in complex topics.Originality/value:This study presents a novel framework for unsupervised semi-automatic textual analysis of relationships in non-social corpora through a new approach for the representation of viewpoints as thematic vectors.展开更多
Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are ...Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are built on the assumption of a static learning environment,but in practical situations,the data generated by the process is dynamic.This evolution of the data is termed concept drift.This research paper presents an approach for predictingmechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment.The method proposed here is applicable to allmechanical devices that are susceptible to failure or operational degradation.The proposed method in this paper is equipped with the capacity to detect the drift in data generation and adaptation.The proposed approach evaluates the machine learning and deep learning models for their efficacy in handling the errors related to industrial machines due to their dynamic nature.It is observed that,in the settings without concept drift in the data,methods like SVM and Random Forest performed better compared to deep neural networks.However,this resulted in poor sensitivity for the smallest drift in the machine data reported as a drift.In this perspective,DNN generated the stable drift detection method;it reported an accuracy of 84%and an AUC of 0.87 while detecting only a single drift point,indicating the stability to performbetter in detecting and adapting to new data in the drifting environments under industrial measurement settings.展开更多
Purpose:This paper introduces a novel perspective on academic excellence,focusing on a researcher’s consistent ability to produce highly-cited publications,and demonstrates its utility in distinguishing highachieving...Purpose:This paper introduces a novel perspective on academic excellence,focusing on a researcher’s consistent ability to produce highly-cited publications,and demonstrates its utility in distinguishing highachieving scientists compared to traditional scientometric indicators.Design/methodology/approach:We formulate this new perspective using a simple yet effective indicator termed the“Academic Midas Touch”(AMT).We then empirically analyze how AMT aligns with or diverges from popular scientometrics such as the H-index,i10-index,and citation counts.We further evaluate AMT’s effectiveness in identifying award-winning scientists,using these awards as a proxy for recognized academic excellence.Findings:Our empirical analysis reveals that the AMT offers a distinct measure of academic excellence that does not fully correlate with commonly used scientometrics.Furthermore,AMT favorably compares to these traditional metrics in its ability to accurately identify award-winning scientists.Research limitations:The AMT emphasizes short-term citation accumulation,thus it may overlook longterm dynamics such as“sleeping beauties”.Additionally,mindful parameter tuning and contextual interpretation within a specific discipline or a meaningful cohort of peers are necessary.Finally,the AMT does not seek to fully capture the multidimensional complexities of research excellence such as collaborations,mentoring,and societal impact.Practical implications:The findings suggest that AMT can serve as a valuable complementary tool for evaluating researchers,particularly in contexts such as excellence recognition,award nominations,grant applications,and faculty promotions,providing an under-explored view of a researcher’s consistent ability to produce highly-influential publications.Originality/value:This work introduces a unique conceptualization and measurement of academic excellence,shifting the focus from cumulative impact to the consistent propensity for producing highly-cited publications.The resulting AMT indicator provides a fresh perspective that complements existing scientometrics,offering a more nuanced understanding and recognition of research excellence.展开更多
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne...Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.展开更多
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A...In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.展开更多
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated...The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.展开更多
The spread of social media has increased contacts of members of communities on the lntemet. Members of these communities often use account names instead of real names. When they meet in the real world, they will find ...The spread of social media has increased contacts of members of communities on the lntemet. Members of these communities often use account names instead of real names. When they meet in the real world, they will find it useful to have a tool that enables them to associate the faces in fiont of them with the account names they know. This paper proposes a method that enables a person to identify the account name of the person ("target") in front of him/her using a smartphone. The attendees to a meeting exchange their identifiers (i.e., the account name) and GPS information using smartphones. When the user points his/her smartphone towards a target, the target's identifier is displayed near the target's head on the camera screen using AR (augmented reality). The position where the identifier is displayed is calculated from the differences in longitude and latitude between the user and the target and the azimuth direction of the target from the user. The target is identified based on this information, the face detection coordinates, and the distance between the two. The proposed method has been implemented using Android terminals, and identification accuracy has been examined through experiments.展开更多
Disaster recovery (DR) and business continuity (BC) have been important areas of inquiry for both business managers and academicians. It is now widely believed that for achieving sustainable business continuity, a fir...Disaster recovery (DR) and business continuity (BC) have been important areas of inquiry for both business managers and academicians. It is now widely believed that for achieving sustainable business continuity, a firm must be able to recover from both man-made and natural disasters. This is especially true for maintaining and recovering the lifeline of the organization and its data. Although the literature has discussed the importance of disaster recovery and business continuity, there is not much known about how Information System Data Analytics Resilience (ISDAR) and the organization’s ability to recover from lost information. In this research, we take a step in this direction and analyze the relationship of IS personnel expertise on ISDAR and investigate Information System (IS) personnel understanding of the firm’s competitive priorities, IS Personnel understanding of business policies and objectives, IS personnel’s ability to solve business problems, IS personnel initiatives in changing business processes and their determination and attentiveness to focus on achieving confident leadership in data and analytics resilience. We collected data through a survey of IS and business managers from 302 participants. Our results show that there is evidence to support our hypothesis and that there may indeed be a relationship between these variables.展开更多
In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)s...In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)scans for early detection and diagnosis of lung nodules.This paper presented a detailed,systematic review of several identification and categorization techniques for lung nodules.The analysis of the report explored the challenges,advancements,and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning(DL)algorithm.The findings also highlighted the usefulness of DL networks,especially convolutional neural networks(CNNs)in elevating sensitivity,accuracy,and specificity as well as overcoming false positives in the initial stages of lung cancer detection.This paper further presented the integral nodule classification stage,which stressed the importance of differentiating between benign and malignant nodules for initial cancer diagnosis.Moreover,the findings presented a comprehensive analysis of multiple techniques and studies for nodule classification,highlighting the evolution of methodologies from conventional machine learning(ML)classifiers to transfer learning and integrated CNNs.Interestingly,while accepting the strides formed by CAD systems,the review addressed persistent challenges.展开更多
Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and R...Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and RANSAC algorithm.The device detection model and data set are established based on Faster RCNN.Finally,the number of training was continuously optimized,and when the loss function of Faster RCNN converged,the identification result of the device was obtained.展开更多
In Unani medicine,Bawl(urine)is recognized as a key diagnostic tool,with humoural imbalances assessed via parameters like color,consistency,sediment,clarity,froth,odor,and volume.This conceptual review explores how th...In Unani medicine,Bawl(urine)is recognized as a key diagnostic tool,with humoural imbalances assessed via parameters like color,consistency,sediment,clarity,froth,odor,and volume.This conceptual review explores how these classical diagnostic indicators may be contextualized alongside modern urinalysis markers(e.g.,bilirubin,protein,ketones,and sedimentation)and examined through emerging artificial intelligence(AI)frameworks.Potential applications include ResNet-18 for color classification,You Only Look Once version 8(YOLOv8)for sediment detection,long short-term memory(LSTM)for viscosity estimation,and EfficientDet for froth analysis,with standardized urine images/videos forming the basis of future datasets.Additionally,a comparative ontology is proposed to align Unani perspectives with diagnostic approaches in traditional Chinese medicine,encouraging cross-system integration.By synthesizing classical epistemology with computational intelligence,this review highlights pathways for developing AI-based decision support systems to promote personalized,accessible,and telemedicine-enabled healthcare.展开更多
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films...The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.展开更多
In recent decades,brain tumors have emerged as a serious neurological disorder that often leads to death.Hence,Brain Tumor Segmentation(BTS)is significant to enable the visualization,classification,and delineation of ...In recent decades,brain tumors have emerged as a serious neurological disorder that often leads to death.Hence,Brain Tumor Segmentation(BTS)is significant to enable the visualization,classification,and delineation of tumor regions in Magnetic Resonance Imaging(MRI).However,BTS remains a challenging task because of noise,non-uniform object texture,diverse image content and clustered objects.To address these challenges,a novel model is implemented in this research.The key objective of this research is to improve segmentation accuracy and generalization in BTS by incorporating Switchable Normalization into Faster R-CNN,which effectively captures the fine-grained tumor features to enhance segmentation precision.MRI images are initially acquired from three online datasets:Dataset 1—Brain Tumor Segmentation(BraTS)2018,Dataset 2—BraTS 2019,and Dataset 3—BraTS 2020.Subsequently,the Switchable Normalization-based Faster Regions with Convolutional Neural Networks(SNFRC)model is proposed for improved BTS in MRI images.In the proposed model,Switchable Normalization is integrated into the conventional architecture,enhancing generalization capability and reducing overfitting to unseen image data,which is essential due to the typically limited size of available datasets.The network depth is increased to obtain discriminative semantic features that improve segmentation performance.Specifically,Switchable Normalization captures the diverse feature representations from the brain images.The Faster R-CNN model develops end-to-end training and effective regional proposal generation,with an enhanced training stability using Switchable Normalization,to perform an effective segmentation in MRI images.From the experimental results,the proposed model attains segmentation accuracies of 99.41%,98.12%,and 96.71%on Datasets 1,2,and 3,respectively,outperforming conventional deep learning models used for BTS.展开更多
Satellite and terrestrial cellular networks can be integrated together to achieve extended broad-band coverage for,e.g.,maritime communication sce-narios,in the upcoming sixth-generation(6G)era.To counter spectrum sca...Satellite and terrestrial cellular networks can be integrated together to achieve extended broad-band coverage for,e.g.,maritime communication sce-narios,in the upcoming sixth-generation(6G)era.To counter spectrum scarcity,collaborative spectrum sharing is considered for hybrid satellite-terrestrial networks(HSTNs)in this paper.With only slowly-varying large-scale channel state information(CSI),joint power and channel allocation is implemented for terrestrial mobile terminals(MTs)which share the same frequency band with the satellite MTs oppor-tunistically.Specially,strict quality service assurance is adopted for terrestrial MTs under the constraint of leakage interference to satellite MTs.With the tar-get of maximizing both the number of served terres-trial MTs and the average sum transmission rate,a double-target spectrum sharing problem is formulated.To solve the complicated mixed integer programming(MIP)problem efficiently,user-centric channel pools are introduced.Simulations demonstrate that the proposed spectrum sharing scheme could achieve a significant performance gain for the HSTN.展开更多
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular puls...Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular pulse rates.Traditional diagnostic methods often struggle with the nuanced interplay of these risk factors,making early detection difficult.In this research,we propose a novel artificial intelligence-enabled(AI-enabled)framework for CVD risk prediction that integrates machine learning(ML)with eXplainable AI(XAI)to provide both high-accuracy predictions and transparent,interpretable insights.Compared to existing studies that typically focus on either optimizing ML performance or using XAI separately for local or global explanations,our approach uniquely combines both local and global interpretability using Local Interpretable Model-Agnostic Explanations(LIME)and SHapley Additive exPlanations(SHAP).This dual integration enhances the interpretability of the model and facilitates clinicians to comprehensively understand not just what the model predicts but also why those predictions are made by identifying the contribution of different risk factors,which is crucial for transparent and informed decision-making in healthcare.The framework uses ML techniques such as K-nearest neighbors(KNN),gradient boosting,random forest,and decision tree,trained on a cardiovascular dataset.Additionally,the integration of LIME and SHAP provides patient-specific insights alongside global trends,ensuring that clinicians receive comprehensive and actionable information.Our experimental results achieve 98%accuracy with the Random Forest model,with precision,recall,and F1-scores of 97%,98%,and 98%,respectively.The innovative combination of SHAP and LIME sets a new benchmark in CVD prediction by integrating advanced ML accuracy with robust interpretability,fills a critical gap in existing approaches.This framework paves the way for more explainable and transparent decision-making in healthcare,ensuring that the model is not only accurate but also trustworthy and actionable for clinicians.展开更多
A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing m...A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing methods. The LDI is complicated, and pre-filtering of depth images causes noticeable geometrical distortions in cases of large baseline warping. This paper presents a depth-aided inpainting method which inherits merits from Criminisi's inpainting algorithm. The proposed method features incorporation of a depth cue into texture estimation. The algorithm efficiently handles depth ambiguity by penalizing larger Lagrange multipliers of flling points closer to the warping position compared with the surrounding existing points. We perform morphological operations on depth images to accelerate the algorithm convergence, and adopt a luma-first strategy to adapt to various color sampling formats. Experiments on test multi-view sequence showed that our method has superiority in depth differentiation and geometrical loyalty in the restoration of warped images. Also, peak signal-to-noise ratio (PSNR) statistics on non-hole regions and whole image comparisons both compare favorably to those obtained by state of the art techniques.展开更多
This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive ...This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive noise as α-stable distribution, new methods which combine the sparse signal representation technique and fractional lower order statistics theory are proposed. In the new algorithms, the fractional lower order statistics vectors of the array output signal are sparsely represented on an overcomplete basis and the DOAs can be effectively estimated by searching the sparsest coefficients. To enhance the robustness performance of the proposed algorithms,the improved algorithms are advanced by eliminating the fractional lower order statistics of the noise from the fractional lower order statistics vector of the array output through a linear transformation. Simulation results have shown the effectiveness of the proposed methods for a wide range of highly impulsive environments.展开更多
The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit. Unlike common pico-satellites, they are designed to be "larger but stronger" with ...The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit. Unlike common pico-satellites, they are designed to be "larger but stronger" with more powerful platforms and unique payloads so as to bear a better promise for real applications. Through their space flight mission, the functionality and perform- ance of the two flight models are tested on orbit and validated to be mostly normal and in consistency with design and ground tests with only several inconforming occasions. Moreover, they have worked properly on orbit for one year so far, well exceed- ing their life expectancy of three months. Therefore, the space flight mission has reached all its goals, and verified that the design concept and the engineering process of the pico-satellites are sufficient in allowing them the desired functionality and perform- ance in, and the adaption to the launch procedure and the low-Earth orbit space environment. In the foreseeable future, the plat- form together with the design concept and the engineering process of the pico-satellites are expected to be applied to more com- plicated real space applications.展开更多
Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 20...Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 2005, the piercing process of 33Mn2V steel in Mannesmann mill is then simulated. The modeling results visualized the dynamic evolution of equivalent stress, especially inside the workpieee. It is shown that the non-uniform distribu- tion of stress on the internal and external surface of the workpiece is a distinct characteristic of processing tube pierc- ing. The numerical model was verified by comparing the values of calculated force parameters of the piercing process with those measured in laboratory eonditions. And it shows that the Kumar-type constitutive relationship meets the practical needs.展开更多
基金part of the research project “What Are States Talking About?”(ISF Grant 2109/19),funded by the Israeli Science Foundation。
文摘Purpose:This paper presents a new semi-automatic methodology for identifying inter-actor relationships by discerning viewpoints in non-social,political textual corpora.Although previous research has successfully discerned viewpoints,biases,and affiliations based on textual features,the task of relationship analysis in the absence of interactional data remains unaddressed.Design/methodology/approach:We introduce a new paradigm for topic representation as a dynamic,continuous,multi-viewpoint spectrum based on the representation of viewpoints as vectors that capture common topical themes.As a proof of concept,we applied this paradigm to scrutinize the inter-state relationships reflected in the speeches of the UN General Assembly Debate Corpus(UNGDC).Findings:The proposed paradigm effectively identifies discursive trends in UNGDC.Our analysis reveals common attitudes towards the topic and their prominence among different groups of actors and facilitates the analysis of relationships between actors through a quantitative representation of viewpoint similarity.The method also successfully captured temporal shifts in viewpoints and overall discourse trends,correlating with major geopolitical events.Research limitations:One limitation of this study is the method’s sensitivity to data sparsity,which can skew viewpoint representations in cases of low topic involvement.Practical implications:The proposed paradigm can be utilized by scholars in political science and other domains as a tool for semi-automated unsupervised textual analysis of various non-social textual sources,enabling the discovery of latent relationships between actors and the modeling of viewpoints in complex topics.Originality/value:This study presents a novel framework for unsupervised semi-automatic textual analysis of relationships in non-social corpora through a new approach for the representation of viewpoints as thematic vectors.
文摘Ever since the research in machine learning gained traction in recent years,it has been employed to address challenges in a wide variety of domains,including mechanical devices.Most of the machine learning models are built on the assumption of a static learning environment,but in practical situations,the data generated by the process is dynamic.This evolution of the data is termed concept drift.This research paper presents an approach for predictingmechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment.The method proposed here is applicable to allmechanical devices that are susceptible to failure or operational degradation.The proposed method in this paper is equipped with the capacity to detect the drift in data generation and adaptation.The proposed approach evaluates the machine learning and deep learning models for their efficacy in handling the errors related to industrial machines due to their dynamic nature.It is observed that,in the settings without concept drift in the data,methods like SVM and Random Forest performed better compared to deep neural networks.However,this resulted in poor sensitivity for the smallest drift in the machine data reported as a drift.In this perspective,DNN generated the stable drift detection method;it reported an accuracy of 84%and an AUC of 0.87 while detecting only a single drift point,indicating the stability to performbetter in detecting and adapting to new data in the drifting environments under industrial measurement settings.
文摘Purpose:This paper introduces a novel perspective on academic excellence,focusing on a researcher’s consistent ability to produce highly-cited publications,and demonstrates its utility in distinguishing highachieving scientists compared to traditional scientometric indicators.Design/methodology/approach:We formulate this new perspective using a simple yet effective indicator termed the“Academic Midas Touch”(AMT).We then empirically analyze how AMT aligns with or diverges from popular scientometrics such as the H-index,i10-index,and citation counts.We further evaluate AMT’s effectiveness in identifying award-winning scientists,using these awards as a proxy for recognized academic excellence.Findings:Our empirical analysis reveals that the AMT offers a distinct measure of academic excellence that does not fully correlate with commonly used scientometrics.Furthermore,AMT favorably compares to these traditional metrics in its ability to accurately identify award-winning scientists.Research limitations:The AMT emphasizes short-term citation accumulation,thus it may overlook longterm dynamics such as“sleeping beauties”.Additionally,mindful parameter tuning and contextual interpretation within a specific discipline or a meaningful cohort of peers are necessary.Finally,the AMT does not seek to fully capture the multidimensional complexities of research excellence such as collaborations,mentoring,and societal impact.Practical implications:The findings suggest that AMT can serve as a valuable complementary tool for evaluating researchers,particularly in contexts such as excellence recognition,award nominations,grant applications,and faculty promotions,providing an under-explored view of a researcher’s consistent ability to produce highly-influential publications.Originality/value:This work introduces a unique conceptualization and measurement of academic excellence,shifting the focus from cumulative impact to the consistent propensity for producing highly-cited publications.The resulting AMT indicator provides a fresh perspective that complements existing scientometrics,offering a more nuanced understanding and recognition of research excellence.
基金This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number(DSR2022-RG-0102).
文摘Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.
基金This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403)the National Natural Science Foundation of China(Grant No.62032002)the 111 Project(Grant No.B21049).
文摘In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
文摘The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.
文摘The spread of social media has increased contacts of members of communities on the lntemet. Members of these communities often use account names instead of real names. When they meet in the real world, they will find it useful to have a tool that enables them to associate the faces in fiont of them with the account names they know. This paper proposes a method that enables a person to identify the account name of the person ("target") in front of him/her using a smartphone. The attendees to a meeting exchange their identifiers (i.e., the account name) and GPS information using smartphones. When the user points his/her smartphone towards a target, the target's identifier is displayed near the target's head on the camera screen using AR (augmented reality). The position where the identifier is displayed is calculated from the differences in longitude and latitude between the user and the target and the azimuth direction of the target from the user. The target is identified based on this information, the face detection coordinates, and the distance between the two. The proposed method has been implemented using Android terminals, and identification accuracy has been examined through experiments.
文摘Disaster recovery (DR) and business continuity (BC) have been important areas of inquiry for both business managers and academicians. It is now widely believed that for achieving sustainable business continuity, a firm must be able to recover from both man-made and natural disasters. This is especially true for maintaining and recovering the lifeline of the organization and its data. Although the literature has discussed the importance of disaster recovery and business continuity, there is not much known about how Information System Data Analytics Resilience (ISDAR) and the organization’s ability to recover from lost information. In this research, we take a step in this direction and analyze the relationship of IS personnel expertise on ISDAR and investigate Information System (IS) personnel understanding of the firm’s competitive priorities, IS Personnel understanding of business policies and objectives, IS personnel’s ability to solve business problems, IS personnel initiatives in changing business processes and their determination and attentiveness to focus on achieving confident leadership in data and analytics resilience. We collected data through a survey of IS and business managers from 302 participants. Our results show that there is evidence to support our hypothesis and that there may indeed be a relationship between these variables.
文摘In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)scans for early detection and diagnosis of lung nodules.This paper presented a detailed,systematic review of several identification and categorization techniques for lung nodules.The analysis of the report explored the challenges,advancements,and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning(DL)algorithm.The findings also highlighted the usefulness of DL networks,especially convolutional neural networks(CNNs)in elevating sensitivity,accuracy,and specificity as well as overcoming false positives in the initial stages of lung cancer detection.This paper further presented the integral nodule classification stage,which stressed the importance of differentiating between benign and malignant nodules for initial cancer diagnosis.Moreover,the findings presented a comprehensive analysis of multiple techniques and studies for nodule classification,highlighting the evolution of methodologies from conventional machine learning(ML)classifiers to transfer learning and integrated CNNs.Interestingly,while accepting the strides formed by CAD systems,the review addressed persistent challenges.
文摘Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and RANSAC algorithm.The device detection model and data set are established based on Faster RCNN.Finally,the number of training was continuously optimized,and when the loss function of Faster RCNN converged,the identification result of the device was obtained.
文摘In Unani medicine,Bawl(urine)is recognized as a key diagnostic tool,with humoural imbalances assessed via parameters like color,consistency,sediment,clarity,froth,odor,and volume.This conceptual review explores how these classical diagnostic indicators may be contextualized alongside modern urinalysis markers(e.g.,bilirubin,protein,ketones,and sedimentation)and examined through emerging artificial intelligence(AI)frameworks.Potential applications include ResNet-18 for color classification,You Only Look Once version 8(YOLOv8)for sediment detection,long short-term memory(LSTM)for viscosity estimation,and EfficientDet for froth analysis,with standardized urine images/videos forming the basis of future datasets.Additionally,a comparative ontology is proposed to align Unani perspectives with diagnostic approaches in traditional Chinese medicine,encouraging cross-system integration.By synthesizing classical epistemology with computational intelligence,this review highlights pathways for developing AI-based decision support systems to promote personalized,accessible,and telemedicine-enabled healthcare.
文摘The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2022R1A2C2012243).
文摘In recent decades,brain tumors have emerged as a serious neurological disorder that often leads to death.Hence,Brain Tumor Segmentation(BTS)is significant to enable the visualization,classification,and delineation of tumor regions in Magnetic Resonance Imaging(MRI).However,BTS remains a challenging task because of noise,non-uniform object texture,diverse image content and clustered objects.To address these challenges,a novel model is implemented in this research.The key objective of this research is to improve segmentation accuracy and generalization in BTS by incorporating Switchable Normalization into Faster R-CNN,which effectively captures the fine-grained tumor features to enhance segmentation precision.MRI images are initially acquired from three online datasets:Dataset 1—Brain Tumor Segmentation(BraTS)2018,Dataset 2—BraTS 2019,and Dataset 3—BraTS 2020.Subsequently,the Switchable Normalization-based Faster Regions with Convolutional Neural Networks(SNFRC)model is proposed for improved BTS in MRI images.In the proposed model,Switchable Normalization is integrated into the conventional architecture,enhancing generalization capability and reducing overfitting to unseen image data,which is essential due to the typically limited size of available datasets.The network depth is increased to obtain discriminative semantic features that improve segmentation performance.Specifically,Switchable Normalization captures the diverse feature representations from the brain images.The Faster R-CNN model develops end-to-end training and effective regional proposal generation,with an enhanced training stability using Switchable Normalization,to perform an effective segmentation in MRI images.From the experimental results,the proposed model attains segmentation accuracies of 99.41%,98.12%,and 96.71%on Datasets 1,2,and 3,respectively,outperforming conventional deep learning models used for BTS.
基金supported in part by the National Natural Science Foundation of China under Grant 62425110 and Grant U22A2002in part by the National Key Research and Development Program of China under Grant 2020YFA0711301+2 种基金in part by the Leading Project of Minzu University of China under Grant 2023QNYL23in part by the Key Research and Development Project of Nantong(Special Project for Prospective Technology Innovation)under Grant GZ2024002in part by the Suzhou Science and Technology Project,and in part by the FAW Jiefang Automotive Co.,Ltd.
文摘Satellite and terrestrial cellular networks can be integrated together to achieve extended broad-band coverage for,e.g.,maritime communication sce-narios,in the upcoming sixth-generation(6G)era.To counter spectrum scarcity,collaborative spectrum sharing is considered for hybrid satellite-terrestrial networks(HSTNs)in this paper.With only slowly-varying large-scale channel state information(CSI),joint power and channel allocation is implemented for terrestrial mobile terminals(MTs)which share the same frequency band with the satellite MTs oppor-tunistically.Specially,strict quality service assurance is adopted for terrestrial MTs under the constraint of leakage interference to satellite MTs.With the tar-get of maximizing both the number of served terres-trial MTs and the average sum transmission rate,a double-target spectrum sharing problem is formulated.To solve the complicated mixed integer programming(MIP)problem efficiently,user-centric channel pools are introduced.Simulations demonstrate that the proposed spectrum sharing scheme could achieve a significant performance gain for the HSTN.
基金funded by Researchers Supporting Project Number(RSPD2025R947),King Saud University,Riyadh,Saudi Arabia.
文摘Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular pulse rates.Traditional diagnostic methods often struggle with the nuanced interplay of these risk factors,making early detection difficult.In this research,we propose a novel artificial intelligence-enabled(AI-enabled)framework for CVD risk prediction that integrates machine learning(ML)with eXplainable AI(XAI)to provide both high-accuracy predictions and transparent,interpretable insights.Compared to existing studies that typically focus on either optimizing ML performance or using XAI separately for local or global explanations,our approach uniquely combines both local and global interpretability using Local Interpretable Model-Agnostic Explanations(LIME)and SHapley Additive exPlanations(SHAP).This dual integration enhances the interpretability of the model and facilitates clinicians to comprehensively understand not just what the model predicts but also why those predictions are made by identifying the contribution of different risk factors,which is crucial for transparent and informed decision-making in healthcare.The framework uses ML techniques such as K-nearest neighbors(KNN),gradient boosting,random forest,and decision tree,trained on a cardiovascular dataset.Additionally,the integration of LIME and SHAP provides patient-specific insights alongside global trends,ensuring that clinicians receive comprehensive and actionable information.Our experimental results achieve 98%accuracy with the Random Forest model,with precision,recall,and F1-scores of 97%,98%,and 98%,respectively.The innovative combination of SHAP and LIME sets a new benchmark in CVD prediction by integrating advanced ML accuracy with robust interpretability,fills a critical gap in existing approaches.This framework paves the way for more explainable and transparent decision-making in healthcare,ensuring that the model is not only accurate but also trustworthy and actionable for clinicians.
基金Project supported by the National Natural Science Foundation of China (No 60802013)the Natural Science Foundation of Zhe-jiang Province, China (No Y106574)
文摘A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing methods. The LDI is complicated, and pre-filtering of depth images causes noticeable geometrical distortions in cases of large baseline warping. This paper presents a depth-aided inpainting method which inherits merits from Criminisi's inpainting algorithm. The proposed method features incorporation of a depth cue into texture estimation. The algorithm efficiently handles depth ambiguity by penalizing larger Lagrange multipliers of flling points closer to the warping position compared with the surrounding existing points. We perform morphological operations on depth images to accelerate the algorithm convergence, and adopt a luma-first strategy to adapt to various color sampling formats. Experiments on test multi-view sequence showed that our method has superiority in depth differentiation and geometrical loyalty in the restoration of warped images. Also, peak signal-to-noise ratio (PSNR) statistics on non-hole regions and whole image comparisons both compare favorably to those obtained by state of the art techniques.
基金supported in part by the National Natural Science Foundation of China(61301228,61371091)the Fundamental Research Funds for the Central Universities(3132014212)
文摘This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive noise as α-stable distribution, new methods which combine the sparse signal representation technique and fractional lower order statistics theory are proposed. In the new algorithms, the fractional lower order statistics vectors of the array output signal are sparsely represented on an overcomplete basis and the DOAs can be effectively estimated by searching the sparsest coefficients. To enhance the robustness performance of the proposed algorithms,the improved algorithms are advanced by eliminating the fractional lower order statistics of the noise from the fractional lower order statistics vector of the array output through a linear transformation. Simulation results have shown the effectiveness of the proposed methods for a wide range of highly impulsive environments.
基金Supported by National Nature Science Foundation of China (61074068, 60774009, 61034007), and the Research Fund for the Doc- toral Program of Chinese Higher Education (200804220028)
基金National Natural Science Foundation of China (60904090)
文摘The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit. Unlike common pico-satellites, they are designed to be "larger but stronger" with more powerful platforms and unique payloads so as to bear a better promise for real applications. Through their space flight mission, the functionality and perform- ance of the two flight models are tested on orbit and validated to be mostly normal and in consistency with design and ground tests with only several inconforming occasions. Moreover, they have worked properly on orbit for one year so far, well exceed- ing their life expectancy of three months. Therefore, the space flight mission has reached all its goals, and verified that the design concept and the engineering process of the pico-satellites are sufficient in allowing them the desired functionality and perform- ance in, and the adaption to the launch procedure and the low-Earth orbit space environment. In the foreseeable future, the plat- form together with the design concept and the engineering process of the pico-satellites are expected to be applied to more com- plicated real space applications.
基金Item Sponsored by Tianjin Natural Science Foundation of China(06YFJ MJC02200,11JCZDJC22600)
文摘Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 2005, the piercing process of 33Mn2V steel in Mannesmann mill is then simulated. The modeling results visualized the dynamic evolution of equivalent stress, especially inside the workpieee. It is shown that the non-uniform distribu- tion of stress on the internal and external surface of the workpiece is a distinct characteristic of processing tube pierc- ing. The numerical model was verified by comparing the values of calculated force parameters of the piercing process with those measured in laboratory eonditions. And it shows that the Kumar-type constitutive relationship meets the practical needs.