The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and secu...The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and security are strengths,traditional consensus mechanisms like Proof of Work(PoW)and Proof of Stake(PoS)face limitations in scalability.PoW achieves decentralization and security but struggles with scalability as transaction volumes grow,while PoS enhances scalability,but risks centralization due to monopolization by high-stake participants.Sharding,a recent advancement in blockchain technology,addresses scalability by partitioning the network into shards that process transactions independently,thereby improving throughput and reducing latency.However,cross-shard communication,essential for transactions involving multiple shards,introduces challenges in coordination and fault tolerance.This research introduces a shard-based hybrid consensus model,PoSW,which combines PoW and PoS to mitigate the limitations of both mechanisms.By integrating PoW’s fairness with PoS’s scalability in a shard-based blockchain,the proposed model addresses key issues of scalability and monopolization.We evaluate the model against state-of-the-art consensus algorithms,including Monoxide and Practical Byzantine Fault Tolerance(PBFT).The results show that the proposed PoSW model reduces communication overhead compared to PBFT and improves resource utilization over Monoxide.In addition to performance gains,the security analysis demonstrates that the PoSW model provides robust defense against common blockchain attacks such as the 51%and Sybil attacks,etc.The proposed approach is particularly suited for applications like decentralized finance(DeFi)and supply chain management,which require both high scalability and robust security.The contributions of this research include the development of the PoSW hybrid consensus mechanism,its comparative evaluation with leading algorithms,and a thorough security analysis.These contributions represent a significant step forward in addressing blockchain’s scalability,fairness,and security challenges.展开更多
In recent years,it has been evident that internet is the most effective means of transmitting information in the form of documents,photographs,or videos around the world.The purpose of an image compression method is t...In recent years,it has been evident that internet is the most effective means of transmitting information in the form of documents,photographs,or videos around the world.The purpose of an image compression method is to encode a picture with fewer bits while retaining the decompressed image’s visual quality.During transmission,this massive data necessitates a lot of channel space.In order to overcome this problem,an effective visual compression approach is required to resize this large amount of data.This work is based on lossy image compression and is offered for static color images.The quantization procedure determines the compressed data quality characteristics.The images are converted from RGB to International Commission on Illumination CIE La^(∗)b^(∗);and YCbCr color spaces before being used.In the transform domain,the color planes are encoded using the proposed quantization matrix.To improve the efficiency and quality of the compressed image,the standard quantization matrix is updated with the respective image block.We used seven discrete orthogonal transforms,including five variations of the Complex Hadamard Transform,Discrete Fourier Transform and Discrete Cosine Transform,as well as thresholding,quantization,de-quantization and inverse discrete orthogonal transforms with CIE La^(∗)b^(∗);and YCbCr to RGB conversion.Peak to signal noise ratio,signal to noise ratio,picture similarity index and compression ratio are all used to assess the quality of compressed images.With the relevant transforms,the image size and bits per pixel are also explored.Using the(n,n)block of transform,adaptive scanning is used to acquire the best feasible compression ratio.Because of these characteristics,multimedia systems and services have a wide range of possible applications.展开更多
Background In modern society,the digital signage installed in many large-scale facilities supports daily life.However,owing to their limited screen size,it is difficult to simultaneously provide different types of inf...Background In modern society,the digital signage installed in many large-scale facilities supports daily life.However,owing to their limited screen size,it is difficult to simultaneously provide different types of information to many viewers at varying distances from the screen.Therefore,in this study,we extend the existing research on the use of hybrid images for tiled displays.Methods To facilitate smoother information selection,a new interactive display method is proposed that incorporates touch-activated widgets as high-frequency parts of hybrid images.These widgets are novel because they are more visible to viewers near the display.We developed an authoring tool called the hybrid image display resolution optimizer(HYDRO),which features two types of control functions to optimize the visibility of touch-activated widgets in terms of placement and resolution.Conclusion The effectiveness of the proposed method is demonstrated empirically through a quantitative user study and an eyetracking-based qualitative evaluation.展开更多
文摘The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and security are strengths,traditional consensus mechanisms like Proof of Work(PoW)and Proof of Stake(PoS)face limitations in scalability.PoW achieves decentralization and security but struggles with scalability as transaction volumes grow,while PoS enhances scalability,but risks centralization due to monopolization by high-stake participants.Sharding,a recent advancement in blockchain technology,addresses scalability by partitioning the network into shards that process transactions independently,thereby improving throughput and reducing latency.However,cross-shard communication,essential for transactions involving multiple shards,introduces challenges in coordination and fault tolerance.This research introduces a shard-based hybrid consensus model,PoSW,which combines PoW and PoS to mitigate the limitations of both mechanisms.By integrating PoW’s fairness with PoS’s scalability in a shard-based blockchain,the proposed model addresses key issues of scalability and monopolization.We evaluate the model against state-of-the-art consensus algorithms,including Monoxide and Practical Byzantine Fault Tolerance(PBFT).The results show that the proposed PoSW model reduces communication overhead compared to PBFT and improves resource utilization over Monoxide.In addition to performance gains,the security analysis demonstrates that the PoSW model provides robust defense against common blockchain attacks such as the 51%and Sybil attacks,etc.The proposed approach is particularly suited for applications like decentralized finance(DeFi)and supply chain management,which require both high scalability and robust security.The contributions of this research include the development of the PoSW hybrid consensus mechanism,its comparative evaluation with leading algorithms,and a thorough security analysis.These contributions represent a significant step forward in addressing blockchain’s scalability,fairness,and security challenges.
文摘In recent years,it has been evident that internet is the most effective means of transmitting information in the form of documents,photographs,or videos around the world.The purpose of an image compression method is to encode a picture with fewer bits while retaining the decompressed image’s visual quality.During transmission,this massive data necessitates a lot of channel space.In order to overcome this problem,an effective visual compression approach is required to resize this large amount of data.This work is based on lossy image compression and is offered for static color images.The quantization procedure determines the compressed data quality characteristics.The images are converted from RGB to International Commission on Illumination CIE La^(∗)b^(∗);and YCbCr color spaces before being used.In the transform domain,the color planes are encoded using the proposed quantization matrix.To improve the efficiency and quality of the compressed image,the standard quantization matrix is updated with the respective image block.We used seven discrete orthogonal transforms,including five variations of the Complex Hadamard Transform,Discrete Fourier Transform and Discrete Cosine Transform,as well as thresholding,quantization,de-quantization and inverse discrete orthogonal transforms with CIE La^(∗)b^(∗);and YCbCr to RGB conversion.Peak to signal noise ratio,signal to noise ratio,picture similarity index and compression ratio are all used to assess the quality of compressed images.With the relevant transforms,the image size and bits per pixel are also explored.Using the(n,n)block of transform,adaptive scanning is used to acquire the best feasible compression ratio.Because of these characteristics,multimedia systems and services have a wide range of possible applications.
文摘Background In modern society,the digital signage installed in many large-scale facilities supports daily life.However,owing to their limited screen size,it is difficult to simultaneously provide different types of information to many viewers at varying distances from the screen.Therefore,in this study,we extend the existing research on the use of hybrid images for tiled displays.Methods To facilitate smoother information selection,a new interactive display method is proposed that incorporates touch-activated widgets as high-frequency parts of hybrid images.These widgets are novel because they are more visible to viewers near the display.We developed an authoring tool called the hybrid image display resolution optimizer(HYDRO),which features two types of control functions to optimize the visibility of touch-activated widgets in terms of placement and resolution.Conclusion The effectiveness of the proposed method is demonstrated empirically through a quantitative user study and an eyetracking-based qualitative evaluation.