期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An IoT-Based Aquaculture Monitoring System Using Firebase
1
作者 Wen-Tsai Sung Indra Griha Tofik Isa Sung-Jung Hsiao 《Computers, Materials & Continua》 SCIE EI 2023年第8期2179-2200,共22页
Indonesia is a producer in the fisheries sector,with production reaching 14.8 million tons in 2022.The production potential of the fisheries sector can be optimally optimized through aquaculture management.One of the ... Indonesia is a producer in the fisheries sector,with production reaching 14.8 million tons in 2022.The production potential of the fisheries sector can be optimally optimized through aquaculture management.One of the most important issues in aquaculture management is how to efficiently control the fish pond water conditions.IoT technology can be applied to support a fish pond aquaculture monitoring system,especially for catfish species(Siluriformes),in real-time and remotely.One of the technologies that can provide this convenience is the IoT.The problem of this study is how to integrate IoT devices with Firebase’s cloud data system to provide reliable and precise data,which makes it easy for fish cultivators to monitor fishpond conditions in real time and remotely.The IoT aquaculture fishpond monitoring use 3 parameters:(1)water temperature;(2)pHwater level;and(3)turbidity level of pond water.IoT devices use temperature sensors,pH sensors,and turbidity sensors,which are integrated with a microcontroller and Wi-Fi module.Data from sensor readings are sent to the Firebase cloud via theWi-Fi module so that it can be accessed in real time by end users with an Androidbased mobile app.The findings are(1)the IoT-based aquaculture monitoring system device has a low error rate in measuring temprature,pH,and turbidity with a percentage of 1.75%,1.94% and 9.78%,respectively.Overall,the total average error of the three components is 4.49%;(2)in cost analysis,IoT-based has a cost-effectiveness of 94.21% compared to labor costs.An IoT-based aquaculture monitoring system using Firebase can be effectively used as a technology for monitoring fish pond conditions in real-time and remotely for fish cultivators that contribute to providing an IoT-based aquaculture monitoring system that produces valid data,is precise,is easy to implement,and is a low-cost system. 展开更多
关键词 Internet of Things aquaculture technology water monitoring system real-time database aquaculture monitoring system
在线阅读 下载PDF
Value Function Mechanism in WSNs-Based Mango Plantation Monitoring System
2
作者 Wen-Tsai Sung Indra Griha Tofik Isa Sung-Jung Hsiao 《Computers, Materials & Continua》 SCIE EI 2024年第9期3733-3759,共27页
Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.... Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income.The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity.In this study,a Wireless Sensor Networks(“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning(DRL)technology in carrying out prediction tasks based on three classifications:“optimal,”“sub-optimal,”or“not-optimal”conditions based on three parameters including humidity,temperature,and soil moisture.The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.A value function-based will be employed to perform DRL model called deep Q-network(DQN)which contributes in optimizing the future reward and performing the precise decision recommendation to the agent and system behavior.The WSNs experiment result indicates the system’s accuracy by capturing the real-time environment parameters is 98.39%.Meanwhile,the results of comparative accuracy model experiments of the proposed DQN,individual Q-learning,uniform coverage(UC),and NaÏe Bayes classifier(NBC)are 97.60%,95.30%,96.50%,and 92.30%,respectively.From the results of the comparative experiment,it can be seen that the proposed DQN used in the study has themost optimal accuracy.Testing with 22 test scenarios for“optimal,”“sub-optimal,”and“not-optimal”conditions was carried out to ensure the system runs well in the real-world data.The accuracy percentage which is generated from the real-world data reaches 95.45%.Fromthe resultsof the cost analysis,the systemcanprovide a low-cost systemcomparedtothe conventional system. 展开更多
关键词 Intelligent monitoring system deep reinforcement learning(DRL) wireless sensor networks(WSNs) deep Q-network(DQN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部