In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplect...In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrodinger equations with variable coefficients, cubic nonlinear Schrodinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11401259)the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRR11407)
文摘In this paper, we propose a variational integrator for nonlinear Schrodinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrodinger equations with variable coefficients, cubic nonlinear Schrodinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.