During drilling operations,cyclic loading is exerted on the wellbore wall by the vibrations of the drill string.This loading could lead to rock fatigue,which in turn might result in wellbore failure.In this study,a nu...During drilling operations,cyclic loading is exerted on the wellbore wall by the vibrations of the drill string.This loading could lead to rock fatigue,which in turn might result in wellbore failure.In this study,a numerical model is developed to simulate the effects of repeated loading on rock fatigue and failure.The simulation is based on an elasto-plastic constitutive model coupled with a damage mechanics approach,which allows us to examine the wellbore instability due to drill string vibrations.The model is verified with the existing data in the literature related to experiments on impact of a steel ball against a curved wall.The findings indicate that cyclic loading increases the development of plastic strain around the wellbore significantly compared to static conditions,promoting rock fatigue.Furthermore,the cyclic loading expands the radius of the yielded zone substantially,a critical factor for maintaining wellbore integrity.The proposed model can be used to evaluate the wellbore stability under repetitive loading caused by the drill string action.展开更多
Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episod...Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episode of felsic magmatism during the late stage of the Pan-African orogeny in the evolution of the Arabian–Nubian Shield(ANS)during the Late Neoproterozoic.On a petrographic basis,the leucogranite is sometimes garnetiferous and can be distinguished into monzogranite,syenogranite,and alkali feldspar granite.The analyses of muscovite,biotite,garnet,and apatite reveal the magmatic nature of the studied leucogranite.The investigated leucogranite,pegmatite,and aplite are alkali-calcic,calc-alkaline,and peraluminous.The peraluminous nature of these rocks is evidenced by using the chemical analyses of biotite.These studied rocks show a slight enrichment in light rare-earth elements(LREEs)and large-ion lithophile elements(LILE,especially Rb and Th),with an insignificant depletion of heavy rareearth elements(HREEs).On a geochemical basis,the leucogranite,pegmatite,and aplite in the study area crystallized from multiple-sourced melts that include mafic,metagraywake,and pelitic.They were derived from melts generated at crystallization temperatures around 568-900℃ for leucogranite,553-781℃ for pegmatite,and 639-779℃ for aplite based on the Zr saturation geothermometers,and at a pressure around 0.39-0.48 GPa,i.e.shallow depth intrusions.The studied felsic rocks have strong negative Eu anomalies,which are very consistent with an upper crust composition,indicating fractionation of feldspar cumulates.Also,they show a moderate La/Sm ratio indicating combined magmatic processes represented by partial melting and fractional crystallization.Integration of whole-rock chemical composition and mineral microanalysis suggests that felsic magmatism in the west Wadi El Gemal area produced voluminous masses of syn-to post-collisional granite,pegmatite,and aplite.An evolutionary three-stage model is presented to understand late magmatism in the ANS in terms of a geodynamic model.Such a model discusses the propagation of felsic magmatism in the ANS during syn-collisional to post-collisional stages.展开更多
The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the found...The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the foundational role in the petroleum exploration.This study utilized the total organic carbon(TOC)content and hydrogen index(HI)to investigate the dominant kerogen type and hydrogen richness for the significance of petroleum generative potential.The Mangahewa coals and carbonaceous shales exhibit an excellent source rocks,with high total organic content(TOC)of more than 22%.The coals and carbonaceous shales were also characterised by Type Ⅱ‒Ⅲ kerogen with Type Ⅲ kerogen,promising oiland gas-prones.The Mangahewa Formation reached the main oil generation,with vitrinite reflectances between 0.53%and 1.01%.Vitrinite reflectance was also used in developing themal models and reveal the transformation(TR)of 10‒50%kerogen to oil during the Late Miocene.The models also showed that the Mangahewa source rock has a significant oil generation and little expulsion competency,with a TR of up to 54%.These findings support the substantial oil-generating potential in the Taranaki Basin's southern graben and can be used as a guide when developing strategies for an oil exploration program.展开更多
Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,ina...Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,inaccuracies,and uncertainties.This study introduces a novel hybrid machine learning approach to predict the permeability of the Wangkwar formation in the Gunya oilfield,Northwestern Uganda.The group method of data handling with differential evolution(GMDH-DE)algorithm was used to predict permeability due to its capability to manage complex,nonlinear relationships between variables,reduced computation time,and parameter optimization through evolutionary algorithms.Using 1953 samples from Gunya-1 and Gunya-2 wells for training and 1563 samples from Gunya-3 for testing,the GMDH-DE outperformed the group method of data handling(GMDH)and random forest(RF)in predicting permeability with higher accuracy and lower computation time.The GMDH-DE achieved an R^(2)of 0.9985,RMSE of 3.157,MAE of 2.366,and ME of 0.001 during training,and for testing,the ME,MAE,RMSE,and R^(2)were 1.3508,12.503,21.3898,and 0.9534,respectively.Additionally,the GMDH-DE demonstrated a 41%reduction in processing time compared to GMDH and RF.The model was also used to predict the permeability of the Mita Gamma well in the Mandawa basin,Tanzania,which lacks core data.Shapley additive explanations(SHAP)analysis identified thermal neutron porosity(TNPH),effective porosity(PHIE),and spectral gamma-ray(SGR)as the most critical parameters in permeability prediction.Therefore,the GMDH-DE model offers a novel,efficient,and accurate approach for fast permeability prediction,enhancing hydrocarbon exploration and production.展开更多
The calculation of a maximum depositional age(MDA)from a detrital zircon sample can provide insight into a variety of geological problems.However,the impact of sample size and calculation method on the accuracy of a r...The calculation of a maximum depositional age(MDA)from a detrital zircon sample can provide insight into a variety of geological problems.However,the impact of sample size and calculation method on the accuracy of a resulting MDA has not been evaluated.We use large populations of synthetic zircon dates(N≈25,000)to analyze the impact of varying sample size(n),measurement uncertainty,and the abundance of neardepositional-age zircons on the accuracy and uncertainty of 9 commonly used MDA calculation methods.Furthermore,a new method,the youngest statistical population is tested.For each method,500 samples of n synthetic dates were drawn from the parent population and MDAs were calculated.The mean and standard deviation of each method ove r the 500 trials at each n-value(50-1000,in increments of 50)were compa red to the known depositional age of the synthetic population and used to compare the methods quantitatively in two simulation scenarios.The first simulation scenario varied the proportion of near-depositional-age grains in the synthetic population.The second scenario varied the uncertainty of the dates used to calculate the MDAs.Increasing sample size initially decreased the mean residual error and standard deviation calculated by each method.At higher n-values(>~300 grains),calculated MDAs changed more slowly and the mean resid ual error increased or decreased depending on the method used.Increasing the p roportion of near-depositional-age grains and lowering measurement uncertainty decreased the number of measurements required for the calculated MDAs to stabilize and decreased the standard deviation in calculated MDAs of the 500 samples.Results of the two simulation scenarios show that the most successful way to increase the accuracy of a calculated M DA is by acquiring a large number of low-uncertainty measurements(300300)approach is used if the calculation of accurate MDAs are key to research goals.Other acquisition method s,such as high-to moderate-precision measurement methods(e.g.,1%-5%,2σ)acquiring low-to moderate-n datasets(50300).Additionally,they are most susceptible to producing erroneous MDAs due to contamination in the field or laboratory,or through disturbances of the youngest zircon’s U-Pb systematics(e.g.,lead loss).More conservative methods that still produce accurate MDAs and are less susceptible to contamination or lead loss include:youngest grain cluster at 1σunce rtainty(YGC 1σ),youngest grain clusterat 2σuncertainty(YGC 2σ),and youngest statistical population(YSP).The ages calculated by these methods may be more useful and appealing when fitting calculated MDAs in to pre-existing chronostratigraphic frameworks,as they are less likely to be younger than the true depositional age.From the results of our numerical models we illustrate what geologic processes(i.e.,tectonic or sedimentary)can be resolved using MDAs derived from strata of different ages.展开更多
The Nanhua basin in South China hosts well-preserved middle-late Neoproterozoic sedimentary and volcanic rocks that are critical for studying the basin evolution, the breakup of the supercontinent Rodinia, the nature ...The Nanhua basin in South China hosts well-preserved middle-late Neoproterozoic sedimentary and volcanic rocks that are critical for studying the basin evolution, the breakup of the supercontinent Rodinia, the nature and dynamics of the "snowball" Earth and diversification of metazoans. Establishing a stratigraphic framework is crucial for better understanding the interactions between tectonic, paleoclimatic and biotic events recorded in the Nanhua basin, but existing stratigraphic correlations remain debated, particularly for pre-Ediacaran strata. Here we report new Laser Ablation Inductively Coupled Plasma Mass Spectrometry(LA-ICPMS) U-Pb zircon ages from the middle and topmost Wuqiangxi Formation(the upper stratigraphic unit of the Banxi Group) in Siduping, Hunan Province, South China. Two samples show similar age distribution, with two major peaks at ca. 820 Ma and 780 Ma and one minor peak at ca. 910 Ma, suggesting that the Wuqiangxi sandstone was mainly sourced from Neoproterozoic rocks. Two major age peaks correspond to two phases of magmatic events associated with the rifting of the Nanhua basin, and the minor peak at ca. 910 Ma may correspond to the Shuangxiwu volcanic arc magmatism, which represents pre-collision/amalgamation subduction on the southeastern margin of the Yangtze Block. The youngest zircon group from the topmost Wuqiangxi Formation has a weighted mean age of 714.6±5.2 Ma, which is likely close to the depositional age of the uppermost Banxi Group. This age, along with the ages reported from other sections, constrains that the Banxi Group was deposited between ca. 820 Ma and ca. 715 Ma. The age of 714.6±5.2 Ma from the top of the Wuqiangxi Formation is indistinguishable with the SIMS U-Pb age of 715.9± 2.8 Ma from the upper Gongdong Formation in the Sibao village section of northern Guangxi, South China. It is also, within uncertainties, overlapped with two TIMS U-Pb ages from pre-Sturtian strata in Oman and Canada. These ages indicate that the Jiangkou(Sturtian) glaciation in South China started at ca. 715 Ma instead of ca. 780 Ma and support a globally synchronous initiation of the Sturtian glaciation at ca. 715 Ma.展开更多
This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of...This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of rockbolt types,determination of bolt length and spacing,factor of safety,and compatibility between support elements.Different types of rockbolting used in engineering practise are also presented.The traditional principle of selecting strong rockbolts is valid only in conditions of low in situ stresses in the rock mass.Energy-absorbing rockbolts are preferred in the case of high in situ stresses.A natural pressure arch is formed in the rock at a certain distance behind the tunnel wall.Rockbolts should be long enough to reach the natural pressure arch when the failure zone is small.The bolt length should be at least 1 m beyond the failure zone.In the case of a vast failure zone,tightly spaced short rockbolts are installed to establish an artificial pressure arch within the failure zone and long cables are anchored on the natural pressure arch.In this case,the rockbolts are usually less than 3 m long in mine drifts,but can be up to 7 m in large-scale rock caverns.Bolt spacing is more important than bolt length in the case of establishing an artificial pressure arch.In addition to the factor of safety,the maximum allowable displacement in the tunnel and the ultimate displacement capacity of rockbolts must be also taken into account in the design.Finally,rockbolts should be compatible with other support elements in the same support system in terms of displacement and energy absorption capacities.展开更多
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit...The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.展开更多
In recent years diamonds and other unusual minerals (carbides, nitrides, metal alloys and native elements) have been recovered from mantle peridotites and chromitites (both high-Cr chromitites and high-Al chromiti...In recent years diamonds and other unusual minerals (carbides, nitrides, metal alloys and native elements) have been recovered from mantle peridotites and chromitites (both high-Cr chromitites and high-Al chromitites) from a number of ophiolites of different ages and tectonic settings. Here we report a similar assemblage of minerals from the Skenderbeu massif of the Mirdita zone ophiolite, west Albania. So far, more than 20 grains of microdiamonds and 30 grains of moissanites (SIC) have been separated from the podiform chromitite. The diamonds are mostly light yellow, transparent, euhedral crystals, 200-300μm across, with a range of morphologies; some are octahedral and cuboctahedron and others are elongate and irregular. Secondary electron images show that some grains have well-developed striations. All the diamond grains have been analyzed and yielded typical Raman spectra with a shift at -1325 cm^-1. The moissanite grains recovered from the Skenderben chromitites are mainly light blue to dark blue, but some are yellow to light yellow. All the analyzed grains have typical Raman spectra with shifts at 766 cm^-1, 787 cm^-1, and 967 cm^-1. The energy spectrums of the moissanites confirm that the grains are composed entirely of silicon and carbon. This investigation expands the occurrence of diamonds and moissanites to Mesozoic ophiolites in the Neo-Tethys. Our new findings suggest that diamonds and moissanites are present, and probably ubiquitous in the oceanic mantle and can provide new perspectives and avenues for research on the origin of ophiolites and podiform chromitites.展开更多
In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃...In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.展开更多
Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well d...Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations.展开更多
Shales are a major sink for K into seawater delivered from continental weathering,and are potential recorders of K cycling.High precision K isotope analyses reveal a[0.6%variation in δ^41K values(41K/39K relative to ...Shales are a major sink for K into seawater delivered from continental weathering,and are potential recorders of K cycling.High precision K isotope analyses reveal a[0.6%variation in δ^41K values(41K/39K relative to NIST SRM 3141a)from a set of well characterized postArchean Australian shale(PAAS)samples.By contrast,loess samples have relatively homogenous δ^41K values(-0.5±0.1%),which may represent the average K composition of upper continental crust.Most of the shales analyzed in this study have experienced K enrichment relative to average continental crust,and the majority of them define a trend of decreasing δ^41K value(from-0.5to-0.7%)with increasing K content and K/Na ratio,indicating cation exchange in clays minerals is accompanied by K isotope fractionation.Several shale samples do not follow the trend and have elevated δ^41K values up to-0.1%,and these samples are characterized by variable Fe isotope compositions,which reflect post-depositional processes.The K isotope variability observed in shales,in combination with recent findings about K isotope fractionation during continental weathering,indicates that K isotopes fractionate during cycling of K between different reservoirs,and K isotopes in sediments may be used to trace geological cycling of K.展开更多
The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component...The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.展开更多
The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may j...The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may jeopardize profitability in the context of open pit mining.Numerical methods such as finite element and discrete element modelling are instrumental to identify specific zones of stability,but they remain approximate and do not pinpoint the critical factors that influence stability without extensive parametric studies.A large number of degrees of freedom and input parameters may make the outcome of numerical modelling insufficient compared to analytical solutions.Existing analytical approaches have not tackled the stability of slopes using non-linear plasticity criteria and threedimensional failure mechanisms.This paper bridges this gap by using the yield design theory and the Hoek-Brown criterion.Moreover,the proposed model includes the effect of seismic forces,which are not always taken into account in slope stability analyses.The results are presented in the form of rigorous mathematical expressions and stability charts involving the loading conditions and the rock mass properties emanating from the plasticity criterion.展开更多
The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie...The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie (1997) is studied during its extratropical transformation stage of extratropical transition (ET) with observational data and numerical simulations. Results show that Winnie experienced its extratropical transformation to the south of the subtropical high without intrusion of the mid-latitude baroclinic zone. This is significantly different from previous studies. Analyses reveal that the cold air, which appeared in the north edge of Winnie circulation, resulted from the precipitation drag and cooling effect of latent heat absorption associated with the intense precipitation there. The cooling only happened below 3 km and the greatest cooling was below 1 km. With the cold air and its advection by the circulation of Winnie, a front was formed in the lower troposphere. The front above is related not only to the cooling in the lower level but also to the warming effect of latent heat release in the middle-upper levels. The different temperature variation in the vertical caused the temperature gradient over Winnie and resulted in the baroclinicity.展开更多
Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile fa...Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile failure of the steel anchor,(b)anchor-grout interface failure,(c)grout-rock interface failure,and(d)rock mass uplift.Field tests were performed in a limestone quarry.These tests were designed to test failure modes B and C through pullout.In the tests of failure mode B,the shear stress on the anchor-grout interface is the largest at the top of the grout column and attenuates towards the distal end for small loads.The shear stress becomes uniformly distributed when the applied load is approximately 50%of the ultimate pullout load.The anchors designed to test failure mode C were installed with an endplate and had a higher toughness than the straight bar anchors.The shear stress on the grout-rock interface is the largest at the endplate and attenuates upward before slip starts along the interface.When the ultimate pullout load is reached,and the grout column starts to slip,the shear stress is approximately constant.The bond shear strength on the anchor-grout interface was approximately 20%of the uniaxial compressive strength of the grout,and the bond strength of the grout-rock interface was around 5%for that of the grout.The grout-rock interface is likely determined by whichever is weaker,the grout or the rock.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
The strength of clay-rich sandstone decreases significantly when in contact with water due to softening effects.This scenario can pose a severe threat to the stability of water diversion tunnels during construction an...The strength of clay-rich sandstone decreases significantly when in contact with water due to softening effects.This scenario can pose a severe threat to the stability of water diversion tunnels during construction and operation periods.To address the issues related to water-induced softening in clay-rich sandstone zones in a water diversion tunnel of Lanzhou Water Supply Project,the microscopic and micromechanical variations of rocks due to increasing water content in two different zones i.e.zones A and B,were determined by various testing methods,such as X-ray diffraction(XRD),scanning electron microscopy(SEM),thin section microscopy,micro-indentation test,sonic velocity test,and slake durability test.The microscopic analysis confirms the presence of montmorillonite mineral which is the dominant problematic geomaterial in engineering application.The integrity and durability of clay-rich sandstone were determined with sonic velocity and slake durability tests to calibrate the results obtained by the micro-indentation test.It shows that the elastic modulus and hardness of clay-rich sandstone decrease with the increase of saturation time,up to 144 h,which is more significant and rapid during early stage of saturation.After 144 h of saturation,the elastic modulus decreases by 89% and 97%,and the hardness decreases by 89% and 99% for zones A and B sandstones,respectively.The results of slake durability and sonic velocity indicate that zone A sandsto ne remains 56.19% durability after 144 h of saturation,while zone B sandstone loses its durability merely after 72 h of saturation.The clay-rich sandstone starts to dissolve in water when the saturation time exceeds 144 h.The significant decreases in strength and durability of clay-rich sandstone due to water-induced softening are serious threats to tunnel stability.The improvements in the strength of surrounding rock mass by grouting and permeability by installation of drainage galleries can reduce the damage caused by water-induced softening.展开更多
Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of T...Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of Tuolangla,a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class.The deposit is associated with Lower Cretaceous Bima Formation.It was intruded by granodiorite porphyry intrusions at about 23.1 Ma.Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry.Molybdenite yielded a Re-Os weighted mean age of 23.5±0.3 Ma and is considered to represent the age of skarn mineralization at the deposit.Theδ^34S values of sulfides,concentrated in a range between 0.6‰to 3.4‰,show that the sulfur has a homogeneous source with characteristics of magmatic sulfur.The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust.The granodiorite porphyry displays high SiO2(68.78%–69.75%)and K2O(3.40%–3.56%)contents,and relatively lower Cr(2.4×10^-6–4.09×10^-6),Ni(2.79×10^-6–3.58×10^-6)contents,and positiveεHf(t)values(7.7–12.9)indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust.The Tuolangla deposit is located in the central part of Zedang terrane.This terrane was once considered an ancient terrane.This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north.Thus,the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane.This finding may clarify why the Oligocene(about 23 Ma)deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene(17–14 Ma)mineralization.展开更多
Norwegian hydropower industry has more than 100 years of experiences in constructing more than4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m(equivalent to almost 10.5 MPa) reache...Norwegian hydropower industry has more than 100 years of experiences in constructing more than4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m(equivalent to almost 10.5 MPa) reached at unlined pressure tunnel of Nye Tyin project. Experiences gained from construction and operation of these unlined pressure shafts and tunnels were the foundation to develop design criteria and principles applied in Norway and some other countries. In addition to the confinement criteria, Norwegian state-of-the-art design principle for unlined pressure shaft and tunnel is that the minor principal stress at the location of unlined pressure shaft or tunnel should be more than the water pressure in the shaft or tunnel. This condition of the minor principal stress is prerequisite for the hydraulic jacking/splitting not to occur through joints and fractures in rock mass. Another common problem in unlined pressure shafts and tunnels is water leakage through hydraulically splitted joints or pre-existing open joints. This article reviews some of the first attempts of the use of unlined pressure shaft and tunnel concepts in Norway, highlights major failure cases and two successful cases of significance, applies Norwegian criteria to the cases and reviews and evaluates triggering factors for failure.This article further evaluates detailed engineering geology of failure cases and also assesses common geological features that could have aggravated the failure. The minor principal stress is investigated and quantified along unlined shaft and tunnel alignment of six selected project cases by using threedimensional numerical model. Furthermore, conditions of failure through pre-existing open joints by hydraulic jacking and leakage are assessed by using two-dimensional fluid flow analysis. Finally, both favorable and unfavorable ground conditions required for the applicability of Norwegian confinement criteria in locating the unlined pressure shafts and tunnels for geotectonic environment different from that of Norway are highlighted.展开更多
基金funded by the Research council of Norway,Equinor and Sekal with NFR(Grant No.308826).
文摘During drilling operations,cyclic loading is exerted on the wellbore wall by the vibrations of the drill string.This loading could lead to rock fatigue,which in turn might result in wellbore failure.In this study,a numerical model is developed to simulate the effects of repeated loading on rock fatigue and failure.The simulation is based on an elasto-plastic constitutive model coupled with a damage mechanics approach,which allows us to examine the wellbore instability due to drill string vibrations.The model is verified with the existing data in the literature related to experiments on impact of a steel ball against a curved wall.The findings indicate that cyclic loading increases the development of plastic strain around the wellbore significantly compared to static conditions,promoting rock fatigue.Furthermore,the cyclic loading expands the radius of the yielded zone substantially,a critical factor for maintaining wellbore integrity.The proposed model can be used to evaluate the wellbore stability under repetitive loading caused by the drill string action.
基金finational supported by the Foundation of Science,Technology and Innovation Funding Authority(STDF)(Award Number:47106Recipient:Mokhles K K.Azer)。
文摘Leucogranite,pegmatite,and aplite from selected areas in the Wadi El Gemal area in the southern Eastern Desert of Egypt were investigated geochemically for their petrogenesis.These rocks represent a significant episode of felsic magmatism during the late stage of the Pan-African orogeny in the evolution of the Arabian–Nubian Shield(ANS)during the Late Neoproterozoic.On a petrographic basis,the leucogranite is sometimes garnetiferous and can be distinguished into monzogranite,syenogranite,and alkali feldspar granite.The analyses of muscovite,biotite,garnet,and apatite reveal the magmatic nature of the studied leucogranite.The investigated leucogranite,pegmatite,and aplite are alkali-calcic,calc-alkaline,and peraluminous.The peraluminous nature of these rocks is evidenced by using the chemical analyses of biotite.These studied rocks show a slight enrichment in light rare-earth elements(LREEs)and large-ion lithophile elements(LILE,especially Rb and Th),with an insignificant depletion of heavy rareearth elements(HREEs).On a geochemical basis,the leucogranite,pegmatite,and aplite in the study area crystallized from multiple-sourced melts that include mafic,metagraywake,and pelitic.They were derived from melts generated at crystallization temperatures around 568-900℃ for leucogranite,553-781℃ for pegmatite,and 639-779℃ for aplite based on the Zr saturation geothermometers,and at a pressure around 0.39-0.48 GPa,i.e.shallow depth intrusions.The studied felsic rocks have strong negative Eu anomalies,which are very consistent with an upper crust composition,indicating fractionation of feldspar cumulates.Also,they show a moderate La/Sm ratio indicating combined magmatic processes represented by partial melting and fractional crystallization.Integration of whole-rock chemical composition and mineral microanalysis suggests that felsic magmatism in the west Wadi El Gemal area produced voluminous masses of syn-to post-collisional granite,pegmatite,and aplite.An evolutionary three-stage model is presented to understand late magmatism in the ANS in terms of a geodynamic model.Such a model discusses the propagation of felsic magmatism in the ANS during syn-collisional to post-collisional stages.
基金Supporting Project number(RSP2025R92)at King Saud University,Riyadh,Saudi Arabia,for their support.
文摘The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the foundational role in the petroleum exploration.This study utilized the total organic carbon(TOC)content and hydrogen index(HI)to investigate the dominant kerogen type and hydrogen richness for the significance of petroleum generative potential.The Mangahewa coals and carbonaceous shales exhibit an excellent source rocks,with high total organic content(TOC)of more than 22%.The coals and carbonaceous shales were also characterised by Type Ⅱ‒Ⅲ kerogen with Type Ⅲ kerogen,promising oiland gas-prones.The Mangahewa Formation reached the main oil generation,with vitrinite reflectances between 0.53%and 1.01%.Vitrinite reflectance was also used in developing themal models and reveal the transformation(TR)of 10‒50%kerogen to oil during the Late Miocene.The models also showed that the Mangahewa source rock has a significant oil generation and little expulsion competency,with a TR of up to 54%.These findings support the substantial oil-generating potential in the Taranaki Basin's southern graben and can be used as a guide when developing strategies for an oil exploration program.
基金supported by the Major National Science and Technology Programs in the“Thirteenth Five-Year”Plan period(Grant No.2017ZX05032-002-004)the Innovation Team Funding of Natural Science Foundation of Hubei Province,China(Grant No.2021CFA031)the Chinese Scholarship Council(CSC)and Silk Road Institute for their support in terms of stipend.
文摘Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,inaccuracies,and uncertainties.This study introduces a novel hybrid machine learning approach to predict the permeability of the Wangkwar formation in the Gunya oilfield,Northwestern Uganda.The group method of data handling with differential evolution(GMDH-DE)algorithm was used to predict permeability due to its capability to manage complex,nonlinear relationships between variables,reduced computation time,and parameter optimization through evolutionary algorithms.Using 1953 samples from Gunya-1 and Gunya-2 wells for training and 1563 samples from Gunya-3 for testing,the GMDH-DE outperformed the group method of data handling(GMDH)and random forest(RF)in predicting permeability with higher accuracy and lower computation time.The GMDH-DE achieved an R^(2)of 0.9985,RMSE of 3.157,MAE of 2.366,and ME of 0.001 during training,and for testing,the ME,MAE,RMSE,and R^(2)were 1.3508,12.503,21.3898,and 0.9534,respectively.Additionally,the GMDH-DE demonstrated a 41%reduction in processing time compared to GMDH and RF.The model was also used to predict the permeability of the Mita Gamma well in the Mandawa basin,Tanzania,which lacks core data.Shapley additive explanations(SHAP)analysis identified thermal neutron porosity(TNPH),effective porosity(PHIE),and spectral gamma-ray(SGR)as the most critical parameters in permeability prediction.Therefore,the GMDH-DE model offers a novel,efficient,and accurate approach for fast permeability prediction,enhancing hydrocarbon exploration and production.
基金Funding for this research was provided by a NSERC Discovery Grant(No.RGPIN/341715-2013)to S.Hubbard and a Queen Eliz-abethⅡscholarship from the University of Calgary to D.Coutts
文摘The calculation of a maximum depositional age(MDA)from a detrital zircon sample can provide insight into a variety of geological problems.However,the impact of sample size and calculation method on the accuracy of a resulting MDA has not been evaluated.We use large populations of synthetic zircon dates(N≈25,000)to analyze the impact of varying sample size(n),measurement uncertainty,and the abundance of neardepositional-age zircons on the accuracy and uncertainty of 9 commonly used MDA calculation methods.Furthermore,a new method,the youngest statistical population is tested.For each method,500 samples of n synthetic dates were drawn from the parent population and MDAs were calculated.The mean and standard deviation of each method ove r the 500 trials at each n-value(50-1000,in increments of 50)were compa red to the known depositional age of the synthetic population and used to compare the methods quantitatively in two simulation scenarios.The first simulation scenario varied the proportion of near-depositional-age grains in the synthetic population.The second scenario varied the uncertainty of the dates used to calculate the MDAs.Increasing sample size initially decreased the mean residual error and standard deviation calculated by each method.At higher n-values(>~300 grains),calculated MDAs changed more slowly and the mean resid ual error increased or decreased depending on the method used.Increasing the p roportion of near-depositional-age grains and lowering measurement uncertainty decreased the number of measurements required for the calculated MDAs to stabilize and decreased the standard deviation in calculated MDAs of the 500 samples.Results of the two simulation scenarios show that the most successful way to increase the accuracy of a calculated M DA is by acquiring a large number of low-uncertainty measurements(300300)approach is used if the calculation of accurate MDAs are key to research goals.Other acquisition method s,such as high-to moderate-precision measurement methods(e.g.,1%-5%,2σ)acquiring low-to moderate-n datasets(50300).Additionally,they are most susceptible to producing erroneous MDAs due to contamination in the field or laboratory,or through disturbances of the youngest zircon’s U-Pb systematics(e.g.,lead loss).More conservative methods that still produce accurate MDAs and are less susceptible to contamination or lead loss include:youngest grain cluster at 1σunce rtainty(YGC 1σ),youngest grain clusterat 2σuncertainty(YGC 2σ),and youngest statistical population(YSP).The ages calculated by these methods may be more useful and appealing when fitting calculated MDAs in to pre-existing chronostratigraphic frameworks,as they are less likely to be younger than the true depositional age.From the results of our numerical models we illustrate what geologic processes(i.e.,tectonic or sedimentary)can be resolved using MDAs derived from strata of different ages.
基金supported by the Ministry of Science and Technology(No.2011CB808806)the National Natural Science Foundation of China (No. 41402026)
文摘The Nanhua basin in South China hosts well-preserved middle-late Neoproterozoic sedimentary and volcanic rocks that are critical for studying the basin evolution, the breakup of the supercontinent Rodinia, the nature and dynamics of the "snowball" Earth and diversification of metazoans. Establishing a stratigraphic framework is crucial for better understanding the interactions between tectonic, paleoclimatic and biotic events recorded in the Nanhua basin, but existing stratigraphic correlations remain debated, particularly for pre-Ediacaran strata. Here we report new Laser Ablation Inductively Coupled Plasma Mass Spectrometry(LA-ICPMS) U-Pb zircon ages from the middle and topmost Wuqiangxi Formation(the upper stratigraphic unit of the Banxi Group) in Siduping, Hunan Province, South China. Two samples show similar age distribution, with two major peaks at ca. 820 Ma and 780 Ma and one minor peak at ca. 910 Ma, suggesting that the Wuqiangxi sandstone was mainly sourced from Neoproterozoic rocks. Two major age peaks correspond to two phases of magmatic events associated with the rifting of the Nanhua basin, and the minor peak at ca. 910 Ma may correspond to the Shuangxiwu volcanic arc magmatism, which represents pre-collision/amalgamation subduction on the southeastern margin of the Yangtze Block. The youngest zircon group from the topmost Wuqiangxi Formation has a weighted mean age of 714.6±5.2 Ma, which is likely close to the depositional age of the uppermost Banxi Group. This age, along with the ages reported from other sections, constrains that the Banxi Group was deposited between ca. 820 Ma and ca. 715 Ma. The age of 714.6±5.2 Ma from the top of the Wuqiangxi Formation is indistinguishable with the SIMS U-Pb age of 715.9± 2.8 Ma from the upper Gongdong Formation in the Sibao village section of northern Guangxi, South China. It is also, within uncertainties, overlapped with two TIMS U-Pb ages from pre-Sturtian strata in Oman and Canada. These ages indicate that the Jiangkou(Sturtian) glaciation in South China started at ca. 715 Ma instead of ca. 780 Ma and support a globally synchronous initiation of the Sturtian glaciation at ca. 715 Ma.
文摘This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of rockbolt types,determination of bolt length and spacing,factor of safety,and compatibility between support elements.Different types of rockbolting used in engineering practise are also presented.The traditional principle of selecting strong rockbolts is valid only in conditions of low in situ stresses in the rock mass.Energy-absorbing rockbolts are preferred in the case of high in situ stresses.A natural pressure arch is formed in the rock at a certain distance behind the tunnel wall.Rockbolts should be long enough to reach the natural pressure arch when the failure zone is small.The bolt length should be at least 1 m beyond the failure zone.In the case of a vast failure zone,tightly spaced short rockbolts are installed to establish an artificial pressure arch within the failure zone and long cables are anchored on the natural pressure arch.In this case,the rockbolts are usually less than 3 m long in mine drifts,but can be up to 7 m in large-scale rock caverns.Bolt spacing is more important than bolt length in the case of establishing an artificial pressure arch.In addition to the factor of safety,the maximum allowable displacement in the tunnel and the ultimate displacement capacity of rockbolts must be also taken into account in the design.Finally,rockbolts should be compatible with other support elements in the same support system in terms of displacement and energy absorption capacities.
基金supported by the National Natural Science Foundation of China(Grant No.U1262203)the National Science and Technology Special Grant(No.2011ZX05006-003)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.14CX06070A)the Chinese Scholarship Council(No.201506450029)
文摘The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.
基金funded by grants from the International Geoscicence Programme (IGCP 649,2015-2020)the National Natural Science Foundation of China(41541017,41641015)+2 种基金the Ministry of Science and Technology of China(2014DFR21270)China Geological Survey(12120115026801,12120115027201, 201511022,DD20160023-01)the Fund from the State Key Laboratory of Continental Tectonics and Dynamics (Z1301-a20 and K201502)
文摘In recent years diamonds and other unusual minerals (carbides, nitrides, metal alloys and native elements) have been recovered from mantle peridotites and chromitites (both high-Cr chromitites and high-Al chromitites) from a number of ophiolites of different ages and tectonic settings. Here we report a similar assemblage of minerals from the Skenderbeu massif of the Mirdita zone ophiolite, west Albania. So far, more than 20 grains of microdiamonds and 30 grains of moissanites (SIC) have been separated from the podiform chromitite. The diamonds are mostly light yellow, transparent, euhedral crystals, 200-300μm across, with a range of morphologies; some are octahedral and cuboctahedron and others are elongate and irregular. Secondary electron images show that some grains have well-developed striations. All the diamond grains have been analyzed and yielded typical Raman spectra with a shift at -1325 cm^-1. The moissanite grains recovered from the Skenderben chromitites are mainly light blue to dark blue, but some are yellow to light yellow. All the analyzed grains have typical Raman spectra with shifts at 766 cm^-1, 787 cm^-1, and 967 cm^-1. The energy spectrums of the moissanites confirm that the grains are composed entirely of silicon and carbon. This investigation expands the occurrence of diamonds and moissanites to Mesozoic ophiolites in the Neo-Tethys. Our new findings suggest that diamonds and moissanites are present, and probably ubiquitous in the oceanic mantle and can provide new perspectives and avenues for research on the origin of ophiolites and podiform chromitites.
基金Project(2019zzts678)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.
文摘Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations.
基金supported by the National Key R&D Program of China (Project No. 2017YFC0602801)National Science Foundation of China (Grant Nos. 41622301, 41873004)+1 种基金supported by the NASA Astrobiology Institute (NNA13AA94A to BLB)the National Science Foundation (1741048-EAR to BLB)
文摘Shales are a major sink for K into seawater delivered from continental weathering,and are potential recorders of K cycling.High precision K isotope analyses reveal a[0.6%variation in δ^41K values(41K/39K relative to NIST SRM 3141a)from a set of well characterized postArchean Australian shale(PAAS)samples.By contrast,loess samples have relatively homogenous δ^41K values(-0.5±0.1%),which may represent the average K composition of upper continental crust.Most of the shales analyzed in this study have experienced K enrichment relative to average continental crust,and the majority of them define a trend of decreasing δ^41K value(from-0.5to-0.7%)with increasing K content and K/Na ratio,indicating cation exchange in clays minerals is accompanied by K isotope fractionation.Several shale samples do not follow the trend and have elevated δ^41K values up to-0.1%,and these samples are characterized by variable Fe isotope compositions,which reflect post-depositional processes.The K isotope variability observed in shales,in combination with recent findings about K isotope fractionation during continental weathering,indicates that K isotopes fractionate during cycling of K between different reservoirs,and K isotopes in sediments may be used to trace geological cycling of K.
基金sponsored by the National Natural Science Foundation of China under Grant No.400750112001 PIA 20026 the National Key program for Developing Basic Sciences:CHeRES(G 1998040907).
文摘The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.
文摘The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may jeopardize profitability in the context of open pit mining.Numerical methods such as finite element and discrete element modelling are instrumental to identify specific zones of stability,but they remain approximate and do not pinpoint the critical factors that influence stability without extensive parametric studies.A large number of degrees of freedom and input parameters may make the outcome of numerical modelling insufficient compared to analytical solutions.Existing analytical approaches have not tackled the stability of slopes using non-linear plasticity criteria and threedimensional failure mechanisms.This paper bridges this gap by using the yield design theory and the Hoek-Brown criterion.Moreover,the proposed model includes the effect of seismic forces,which are not always taken into account in slope stability analyses.The results are presented in the form of rigorous mathematical expressions and stability charts involving the loading conditions and the rock mass properties emanating from the plasticity criterion.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.40233036,40305004)the Ministry of Science and Technology Project of China(Grant No.2001CCA02200).
文摘The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie (1997) is studied during its extratropical transformation stage of extratropical transition (ET) with observational data and numerical simulations. Results show that Winnie experienced its extratropical transformation to the south of the subtropical high without intrusion of the mid-latitude baroclinic zone. This is significantly different from previous studies. Analyses reveal that the cold air, which appeared in the north edge of Winnie circulation, resulted from the precipitation drag and cooling effect of latent heat absorption associated with the intense precipitation there. The cooling only happened below 3 km and the greatest cooling was below 1 km. With the cold air and its advection by the circulation of Winnie, a front was formed in the lower troposphere. The front above is related not only to the cooling in the lower level but also to the warming effect of latent heat release in the middle-upper levels. The different temperature variation in the vertical caused the temperature gradient over Winnie and resulted in the baroclinicity.
文摘Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile failure of the steel anchor,(b)anchor-grout interface failure,(c)grout-rock interface failure,and(d)rock mass uplift.Field tests were performed in a limestone quarry.These tests were designed to test failure modes B and C through pullout.In the tests of failure mode B,the shear stress on the anchor-grout interface is the largest at the top of the grout column and attenuates towards the distal end for small loads.The shear stress becomes uniformly distributed when the applied load is approximately 50%of the ultimate pullout load.The anchors designed to test failure mode C were installed with an endplate and had a higher toughness than the straight bar anchors.The shear stress on the grout-rock interface is the largest at the endplate and attenuates upward before slip starts along the interface.When the ultimate pullout load is reached,and the grout column starts to slip,the shear stress is approximately constant.The bond shear strength on the anchor-grout interface was approximately 20%of the uniaxial compressive strength of the grout,and the bond strength of the grout-rock interface was around 5%for that of the grout.The grout-rock interface is likely determined by whichever is weaker,the grout or the rock.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.
基金supported by the National Key R&D Program of China(Grant Nos.2018YFC0809601 and 2018YFC0809600)Key projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)Hubei Province Natural Science Foundation Innovation Group(Grant No.2018CFA013)。
文摘The strength of clay-rich sandstone decreases significantly when in contact with water due to softening effects.This scenario can pose a severe threat to the stability of water diversion tunnels during construction and operation periods.To address the issues related to water-induced softening in clay-rich sandstone zones in a water diversion tunnel of Lanzhou Water Supply Project,the microscopic and micromechanical variations of rocks due to increasing water content in two different zones i.e.zones A and B,were determined by various testing methods,such as X-ray diffraction(XRD),scanning electron microscopy(SEM),thin section microscopy,micro-indentation test,sonic velocity test,and slake durability test.The microscopic analysis confirms the presence of montmorillonite mineral which is the dominant problematic geomaterial in engineering application.The integrity and durability of clay-rich sandstone were determined with sonic velocity and slake durability tests to calibrate the results obtained by the micro-indentation test.It shows that the elastic modulus and hardness of clay-rich sandstone decrease with the increase of saturation time,up to 144 h,which is more significant and rapid during early stage of saturation.After 144 h of saturation,the elastic modulus decreases by 89% and 97%,and the hardness decreases by 89% and 99% for zones A and B sandstones,respectively.The results of slake durability and sonic velocity indicate that zone A sandsto ne remains 56.19% durability after 144 h of saturation,while zone B sandstone loses its durability merely after 72 h of saturation.The clay-rich sandstone starts to dissolve in water when the saturation time exceeds 144 h.The significant decreases in strength and durability of clay-rich sandstone due to water-induced softening are serious threats to tunnel stability.The improvements in the strength of surrounding rock mass by grouting and permeability by installation of drainage galleries can reduce the damage caused by water-induced softening.
文摘Although some porphyry-skarn deposits occur in post-collisional extensional settings,the post-collisional deposits remain poorly understood.Here the authors describe the igneous geology,and mineralization history of Tuolangla,a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class.The deposit is associated with Lower Cretaceous Bima Formation.It was intruded by granodiorite porphyry intrusions at about 23.1 Ma.Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry.Molybdenite yielded a Re-Os weighted mean age of 23.5±0.3 Ma and is considered to represent the age of skarn mineralization at the deposit.Theδ^34S values of sulfides,concentrated in a range between 0.6‰to 3.4‰,show that the sulfur has a homogeneous source with characteristics of magmatic sulfur.The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust.The granodiorite porphyry displays high SiO2(68.78%–69.75%)and K2O(3.40%–3.56%)contents,and relatively lower Cr(2.4×10^-6–4.09×10^-6),Ni(2.79×10^-6–3.58×10^-6)contents,and positiveεHf(t)values(7.7–12.9)indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust.The Tuolangla deposit is located in the central part of Zedang terrane.This terrane was once considered an ancient terrane.This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north.Thus,the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane.This finding may clarify why the Oligocene(about 23 Ma)deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene(17–14 Ma)mineralization.
文摘Norwegian hydropower industry has more than 100 years of experiences in constructing more than4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m(equivalent to almost 10.5 MPa) reached at unlined pressure tunnel of Nye Tyin project. Experiences gained from construction and operation of these unlined pressure shafts and tunnels were the foundation to develop design criteria and principles applied in Norway and some other countries. In addition to the confinement criteria, Norwegian state-of-the-art design principle for unlined pressure shaft and tunnel is that the minor principal stress at the location of unlined pressure shaft or tunnel should be more than the water pressure in the shaft or tunnel. This condition of the minor principal stress is prerequisite for the hydraulic jacking/splitting not to occur through joints and fractures in rock mass. Another common problem in unlined pressure shafts and tunnels is water leakage through hydraulically splitted joints or pre-existing open joints. This article reviews some of the first attempts of the use of unlined pressure shaft and tunnel concepts in Norway, highlights major failure cases and two successful cases of significance, applies Norwegian criteria to the cases and reviews and evaluates triggering factors for failure.This article further evaluates detailed engineering geology of failure cases and also assesses common geological features that could have aggravated the failure. The minor principal stress is investigated and quantified along unlined shaft and tunnel alignment of six selected project cases by using threedimensional numerical model. Furthermore, conditions of failure through pre-existing open joints by hydraulic jacking and leakage are assessed by using two-dimensional fluid flow analysis. Finally, both favorable and unfavorable ground conditions required for the applicability of Norwegian confinement criteria in locating the unlined pressure shafts and tunnels for geotectonic environment different from that of Norway are highlighted.