期刊文献+
共找到508篇文章
< 1 2 26 >
每页显示 20 50 100
Integrating well logs,3D seismic,and earthquake data for comprehensive prediction of 3D in-situ stress orientations:A case study from the Weiyuan area in the Sichuan Basin,China 被引量:1
1
作者 Huan Cao Yang Zhao +4 位作者 Hai-Chao Chen Le-Le Zhang Cheng-Gang Xian Ji-Dong Yang Lu Liu 《Petroleum Science》 2025年第1期210-221,共12页
Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(F... Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations. 展开更多
关键词 In-situ stress orientation SHmax Azimuthal velocity anisotropy Focal source mechanism Formation micro-imager
原文传递
An investigation on the wind profiles and gravity wave dynamics in MLT region based on the meteor radars from the Meridian Project
2
作者 Tai Liu Zhe Wang +2 位作者 MengXi Shi Willie Soon ShiCan Qiu 《Earth and Planetary Physics》 EI CAS 2025年第1期29-38,共10页
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri... The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km. 展开更多
关键词 meteor radar wind field gravity wave Lomb−Scargle method
在线阅读 下载PDF
The Scientific Impotence of Modern Seismology. Causes of Decline and Necessary Measures for the Revival of Earthquake Science
3
作者 Serguei Bychkov 《Open Journal of Earthquake Research》 2025年第1期1-6,共6页
It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a relian... It is widely recognized by many within the scientific community that the field of seismology faces challenges in aligning with established scientific practices for studying earthquakes. Some views may suggest a reliance on methods that resemble divination rather than sound scientific inquiry. Despite efforts to understand seismic phenomena over the past three centuries [1], progress in seismology has been perceived as somewhat stagnant. Criticisms have been raised about certain theories, such as Mr. Reid’s Elastic Recoil theory from 1910 [2], and its purported advancements in comprehending seismic processes. While acknowledging various perspectives on this matter [3]-[7], it is important to reflect on the historical context and potential limitations in our understanding. Addressing concerns raised within the discipline involves examining educational practices and fostering a rigorous academic environment to promote scientific excellence. This article aims to explore the underlying factors contributing to the current state of seismology, offering insights into overcoming challenges and fostering advancements that benefit the scientific community and society as a whole. 展开更多
关键词 Earthquake SEISMOLOGY Elastic Recoil Earth Sciences
在线阅读 下载PDF
Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia
4
作者 Sulistiani Rachmat Fajar Lubis +2 位作者 I Putu Santikayasa Muh.Taufik Gumilar Utamas Nugraha 《Journal of Groundwater Science and Engineering》 2025年第4期352-370,共19页
Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC chan... Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion. 展开更多
关键词 Groundwater Recharge Climate Change Remote Sensing Socioeconomic Pathways SWAT
在线阅读 下载PDF
Seismotectonics of the Kuhbanan fault zone analyzed through spatial distribution of fractal dimensions
5
作者 Abolfazl MOKHTARI Seyed Davoud MOHAMMADI Saeed ZAREI 《Journal of Mountain Science》 2025年第2期436-450,共15页
Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fau... Fractal geometry quantitatively analyzes the irregular distribution of geological features,highlighting the dynamic aspects of tectonics,seismic heterogeneity,and geological maturity.This study analyzed the active fault data along the Kuhbanan fault zone in southeastern Iran by applying the boxcounting method and observing the changes in Coulomb stress and tried to find the potential triggering parts.The entire region was divided into 16subzones with the box-counting method,and then the fractal dimension(D)in each zone was calculated.The analysis of the fractal dimension for active faults and earthquake epicenters along with the seismicity parameter(b)and their ratio in the Kuhbanan region indicates an imbalance between seismic fractals and faults.This finding suggests that the area may have the potential for future earthquakes or hidden faults.In conjunction with b-value and changes in Coulomb stress change,D-value analysis reveals intense tectonic activity and stress accumulation,particularly within the Ravar,Zarand,and Kianshahr sections.It may be considered a potential location for future earthquakes.The changes in Coulomb stress resulting from the 2005Dahuieh earthquake have also placed this region within the stress accumulation zone,potentially triggering the mentioned areas.This integrative approach,backed by historical earthquake data,highlights the impact of fault geometry and stress dynamics,offering an enhanced framework for earthquake forecasting and seismic risk mitigation applicable to other tectonically active areas within the Iranian plateau. 展开更多
关键词 Tectonic Dynamics Fractal Analysis Seismic Hazard Assessment Active Faults
原文传递
Far-feld radiation patterns of distributed acoustic sensing in anisotropic media with an explosive source and vertically straight fber
6
作者 Le-Le Zhang Yang Zhao +4 位作者 Lu Liu Ge Jin Cheng-Gang Xian Zhi-Peng Ning Chuang-Yang Wang 《Petroleum Science》 2025年第2期641-652,共12页
Distributed acoustic sensing(DAS)is increasingly used in seismic exploration owing to its wide frequency range,dense sampling and real-time monitoring.DAS radiation patterns help to understand angle response of DAS re... Distributed acoustic sensing(DAS)is increasingly used in seismic exploration owing to its wide frequency range,dense sampling and real-time monitoring.DAS radiation patterns help to understand angle response of DAS records and improve the quality of inversion and imaging.In this paper,we solve the 3D vertical transverse isotropic(VTI)Christoffel equation and obtain the analytical,frst-order,and zero-order Taylor expansion solutions that represent P-,SV-,and SH-wave phase velocities and polarization vectors.These analytical and approximated solutions are used to build the P/S plane-wave expression identical to the far-feld term of seismic wave,from which the strain rate expressions are derived and DAS radiation patterns are thus extracted for anisotropic P/S waves.We observe that the gauge length and phase angle terms control the radiating intensity of DAS records.Additionally,the Bond transformation is adopted to derive the DAS radiation patterns in title transverse isotropic(TTI)media,which exhibits higher complexity than that of VTI media.Several synthetic examples demonstrate the feasibility and effectiveness of our theory. 展开更多
关键词 Distributed acoustic sensing Seismic anisotropy Geophysical methods Numerical solutions
原文传递
Moonward deviation of the solar wind
7
作者 Chao Wei Hui Zhang +3 位作者 QuanMing Lu JunYi Ren XiaoWei Ma RunZe Li 《Earth and Planetary Physics》 2025年第6期1157-1162,共6页
The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.... The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought. 展开更多
关键词 plasma-moon interaction moonward deviation IMF connectivity lunar upstream perturbations
在线阅读 下载PDF
Rock physical characteristics of deep dolomite under complex geological conditions:A case study of 4th Member of Sinian Dengying Formation in the Sichuan Basin,China 被引量:1
8
作者 Chuang Li Shu-Xin Pan +4 位作者 Hong-Bin Wang Ji-Xin Deng Jian-Guo Zhao Zhi Li Yu Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2370-2382,共13页
The deep-ultra deep carbonate reservoir in China,commonly subjected to modification of multi-stage diagenesis,has extremely high heterogeneity.Conventional rock physics analysis cannot accurately identify the elastic ... The deep-ultra deep carbonate reservoir in China,commonly subjected to modification of multi-stage diagenesis,has extremely high heterogeneity.Conventional rock physics analysis cannot accurately identify the elastic responses of reservoir.Here,the rock physics properties of the dolomite from the 4th Member of the Sinian Dengying Formation are experimentally measured,and the change law of rock physics characteristics is investigated within the framework of the diagenetic processes by the analysis of the elastic and petrologic characteristics,pore structure,and sedimentary environments.The results show that the differentiated diagenesis results in different pore structure characteristics and microtexture characteristics of the rock.The microbial dolomite of the algal mound-grain beach facies is subjected to the contemporaneous microbial dolomitization and seepage-reflux dolomitization,penecontemporaneous selective dissolution,burial dolomitization,and hydrothermal dolomitization.The resultant crystalline dolomite is found with one main type of the dolomite crystal contact boundaries,and the dissolution pore is extensive development.The siliceous,muddy,and limy dolomite of the interbeach sea environment mainly experiences the weak capillary concentration dolomitization,intensive mechanical compaction-induced densification,and burial dolomitization.Such crystalline dolomite is observed with four types of contact boundaries,namely the dolomite contact,clay contact,quartz contact,and calcite contact boundaries,and porosity mostly attributed to residual primary inter-granular or crystalline pores.The samples with the same crystal boundary condition have consistent correlations between the compressional-and shear-wave velocities,and between the compressional-wave velocity and the velocity ratio.Additionally,the variation of the acoustic velocity with effective pressure and the intensity of pore-scale fluid-related dispersion are controlled by the differentiation of pore structure types of the samples.The varied effects of soft pores like micro-cracks on the compressional-and shearwave velocity causes considerable changes in the relationships between the compressional-and shearwave velocities,compressional-wave velocity and velocity ratio,and porosity and acoustic velocity.This research is an attempt to demonstrate a novel method for investigating the rock physics variation of rock during the geological process,and the obtained findings can provide the rock physics basis for seismic prediction of the characteristics of deep carbonate reservoirs. 展开更多
关键词 Deep-ultra deep carbonate reservoirs Rock physics properties DOLOMITE Seismic elastic properties MICRO-CRACK Pore structure types
原文传递
Cascading multi-segment rupture process of the 2023 Turkish earthquake doublet on a complex fault system revealed by teleseismic P wave back projection method 被引量:1
9
作者 Bonan Cao Zengxi Ge 《Earthquake Science》 2024年第2期158-173,共16页
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj... In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks. 展开更多
关键词 2023 Turkish earthquake doublet back projection method cascading segmented rupture process coseismic triggering super-shear ruptures
在线阅读 下载PDF
Redox mechanism of geobattery and related electrical signals using a novel real-time self-potential monitoring experimental platform 被引量:2
10
作者 XIE Jing CUI Yi-an +4 位作者 ZHANG Li-juan GUO You-jun CHEN Hang ZHANG Peng-fei LIU Jian-xin 《Journal of Central South University》 CSCD 2024年第11期4155-4173,共19页
Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is w... Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments. 展开更多
关键词 SELF-POTENTIAL real-time monitoring laboratory experiment geobattery mechanism quantitative inversion
在线阅读 下载PDF
3D and 2D topographic correction to estimated geothermal gradient from the base of gas hydrate stability zone in the Andaman Forearc Basin
11
作者 Uma Shankar 《Energy Geoscience》 EI 2024年第2期314-320,共7页
Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t... Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps. 展开更多
关键词 Gas hydrate BSR Geothermal gradient 3D and 2D topographic modeling Andaman Forearc Basin
在线阅读 下载PDF
Below-Moho Earthquakes of Tibet,Himalaya,the Indian Foreland,and Worldwide:How,Where and Why?
12
作者 Simon LKLEMPERE WANG Shiqi +3 位作者 SONG Xiaohan Jackie RHARRIS Hitank KASAUNDHAN LIANG Xiaofeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期27-29,共3页
We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in ... We seek to understand lithospheric rheology by mapping continental earthquake depths relative to Moho depth,across the entire India/Asia convergent orogen,and eventually worldwide.Such mapping has particular value in geothermometry,and potentially in identifying regions of delamination.How:We are extending our Sn/Lg method beyond amplitude ratios of regional seismic phases measured on arrays(array Sn/Lg method,Wang and Klemperer,2021)to include frequency proxies for earthquake depth relative to Moho(Wang&Klemperer,2024a,b;Harris et al.,2024). 展开更多
关键词 Continental mantle earthquakes TIBET HIMALAYA Indian Foreland
在线阅读 下载PDF
Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints
13
作者 Pei Zhang Xiaodong Song +2 位作者 Jiangtao Li Xingchen Wang Xuezhen Zhang 《Earthquake Science》 2024年第2期93-106,共14页
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j... Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region. 展开更多
关键词 joint inversion receiver functions surface waves crustal thickness vP/vS ratio NE Qinghai-Xizang Plateau
在线阅读 下载PDF
Inversion of walkaway VSP data in the presence of lateral velocity heterogeneity
14
作者 Vladimir Grechka Ilya Tsvankin Pedro Contreras 《Energy Geoscience》 EI 2024年第2期304-313,共10页
Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of late... Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of lateral homogeneity,which makes the horizontal slowness components at depths of downhole receivers equal to those measured at the surface.Any violations of this assumption,such as lateral heterogeneity or nonzero dip of intermediate interfaces,lead to distortions in reconstructed slowness surfaces and,consequently,to errors in estimated anisotropic parameters.In this work,we relax the assumption of lateral homogeneity and discuss how to correct vertical seismic profile data for weak lateral heterogeneity.We describe a procedure of downward continuation of recorded traveltimes that accounts for the presence of both vertical inhomogeneity and weak lateral heterogeneity,which produces correct slowness surfaces at depths of downhole receivers,noticing that sufficiently dense receiver coverage along a borehole is required to separate influences of vertical and lateral heterogeneity on measured traveltimes and obtain accurate estimates of the slowness surfaces.Once the slowness surfaces are found and a desired type of anisotropic model to be inverted is selected,the corresponding anisotropic parameters,providing the best fit to the estimated slownesses,can be obtained.We invert the slowness surfaces of P-waves for parameters of the simplest anisotropic model describing dipping fractures(transversely isotropic medium with a tilted symmetry axis).Five parameters of this model,namely,the P-wave velocity V0 in the direction of the symmetry axis,Thomsen's anisotropic coefficients e and d,the tilt n,and the azimuth b of the symmetry axis,can be estimated in a stable manner when maximum source offset is greater than half of receiver depth. 展开更多
关键词 Walkaway vertical seismic profile Lateral velocity heterogeneity Anisotropic parameter estimation Vertical inhomogeneity
在线阅读 下载PDF
Analysis of the effect of the 2021 Semeru eruption on water vapor content and atmospheric particles using GNSS and remote sensing
15
作者 Mokhamad Nur Cahyadi Arizal Bawasir +7 位作者 Syachrul Arief Amien Widodo Meifal Rusli Deni Kusumawardani Yessi Rahmawati Ana Martina Putra Maulida Hilda Lestiana 《Geodesy and Geodynamics》 EI CSCD 2024年第1期33-41,共9页
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ... Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period. 展开更多
关键词 Semeru GNSS Water vapor RAINFALL SO_(2)
原文传递
MAVEN observation of magnetosonic waves in the Martian magnetotail region
16
作者 ShangChun Teng JiCheng Sun +3 位作者 JiaWei Gao Y.Harada Markus Fraenz DeSheng Han 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期317-325,共9页
Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to origin... Magnetosonic waves are an important medium for energy transfer in collisionless space plasma.Magnetosonic waves have been widely investigated in the upstream of the bow shock at Mars.These waves are believed to originate from pickup ions or reflected particles.By utilizing MAVEN spacecraft data,we have observed the occurrence of quasi-perpendicularly propagating magnetosonic emissions near the proton gyrofrequency in the Martian magnetotail region.These plasma waves are associated with a significant enhancement of proton and oxygen flux.The excited magnetosonic waves could possibly heat the protons through resonance and facilitate the ionospheric plasma escape.Our results could be helpful to better understand the Mars’magnetospheric dynamics and offer insights into possible energy redistribution between waves and plasma in the Martian nightside magnetosphere. 展开更多
关键词 Martian magnetotail region magnetosonic waves proton escape
在线阅读 下载PDF
Paleostress from healed microcracks and fluid inclusions in granites of the Ogcheon folded belt, South Korea
17
作者 Seong-Seung Kang Bo-An Jang +1 位作者 Taeyoo Na Jeongdu Noh 《Episodes》 2024年第3期625-640,共16页
In the northeastern and southwestern areas of the Ogcheon folded belt where Mesozoic granites are distributed,healed microcracks and fluid inclusions in the granite bodies were measured to elucidate the paleostress fi... In the northeastern and southwestern areas of the Ogcheon folded belt where Mesozoic granites are distributed,healed microcracks and fluid inclusions in the granite bodies were measured to elucidate the paleostress field that acted on these areas.The predominant orientations of healed microcracks in the northeastern and southwestern areas of the Ogcheon folded belt are the N50°W for the Inje granite,N30°W for the Jecheon granite,N55°W for the Wolaksan granite,N5°W for the Sokrisan granite,N30°W for the Daebo granite,and N70°W for the foliated granite.The homogenization and trapping temperatures of fluid inclusions in the Jecheon granite are 170–290°C and 260–390°C,respectively,and the formation period of healed microcracks is estimated to be 209–149 Ma.In the Inje granite,the homogenization and trapping temperatures of fluid inclusions are 165–290°C and 250–400°C,respectively,and the formation period of healed microcracks is estimated to be 176–160 Ma.In the Wolaksan granite,the homogenization and trapping temperatures of fluid inclusions are 165–375°C and 230–570°C,respectively,and the formation period of healed microcracks is estimated to be 116–88 Ma.In the Sokrisan granite,the homogenization and trapping temperatures of fluid inclusions are 155–280°C and 210–410°C,respectively,and the formation period of healed microcracks is estimated to be 92–84 Ma.In the foliated granite,the homogenization and trapping temperatures of fluid inclusions are 150–310°C and 380–550°C,respectively,and the formation period of healed microcracks is estimated to be 120–166 Ma.In the Daebo granite,the homogenization and trapping temperatures of fluid inclusions are 150–320°C and 380–440°C,respectively,and the formation period of healed microcracks is estimated to be 183–166 Ma.Consequently,during the Mesozoic,the predominant maximum horizontal stress direction in the Korean Peninsula was NW-SE,with secondary influences from N-S and E-W directions.Moreover,the direction of these maximum horizontal stresses is thought to have rotated from NW–SE to N–S around the mid Cretaceous period.The directions and formation periods of healed microcracks in the study area coincide well with the Mesozoic orogenies of the Korean Peninsula.The Daebo orogeny of the Jurassic to early Cretaceous mainly influenced the Jecheon granite,Inje granite,Wolaksan granite,foliated granite,and Daebo granite in the NW-SE direction,while the Bulguksa orogeny of the mid to late Cretaceous mainly influenced the Sokrisan granite in the N-S direction. 展开更多
关键词 paleostress field ogcheon folded belt wolaksan graniten w sokrisan graniten w healed microcracks mesozoic granites PALEOSTRESS fluid inclusions
在线阅读 下载PDF
Discussion on origin of Pn velocity variationin China and adjacent region 被引量:14
18
作者 裴顺平 许忠淮 汪素云 《地震学报》 CSCD 北大核心 2004年第1期1-10,共10页
Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network ... Pn velocity lateral variation and anisotropy images were reconstructed by adding about 50 000 travel times from the regional seismic networks to the datum set of near 40 000 travel times from National Seismic Network of China used by WANG, et al. We discussed the relation of Pn velocity variation to Moho depth, Earths heat flow, distribution of Cenozoic volcanic rock and the result of rock experiment under high pressure and high temperature. The result of quantitative analysis indicates that Pn velocity is positively correlated with the crust thickness and negatively correlated with the Earths heat flow. Two linear regression equations, one between Pn velocity and crust thickness, and the other between Pn velocity and heat flow, were obtained. The rate of variation of Pn veloc-ity vP with pressure P, Pv/p, estimated from the velocity variation with crust thickness Hv/p, is close to the result obtained from the rock experiment under high pressure and high temperature. If the effect of crust thick-ness on Pn velocity is deducted from the velocity variation, then the low Pn velocity beneath Qinghai-Xizang pla-teau is more notable. The low Pn velocity regions well agree with the Cenozoic volcanic rock. In the several re-gions with significant anisotropy, the direction of fast Pn velocity is consistent with the orientation of maximum principal crustal compressive stress, and also with the direction of present-day crustal movement. It indicates that the fast Pn velocity direction may be related to the deformation or flow of top mantle material along the direction of maximum pressure. 展开更多
关键词 地震台网 PN波 地壳厚度 新生代 火山岩 各向异性 层析成像
在线阅读 下载PDF
Numerical simulation of dynamic Coulomb stress changes induced by M6.5 earthquake in Wuding, Yunnan and its relationship with aftershocks 被引量:6
19
作者 虎雄林 吴小平 +3 位作者 杨润海 付虹 胡家富 黄雍 《地震学报》 CSCD 北大核心 2008年第1期26-35,共10页
Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequen... Based on the discrete wavenumber method, we calculate the fields of dynamic Coulomb rupture stress changes and static stress changes caused by M6.5 earthquake in Wuding, and study their relationship with the subsequent after- shocks. The results show that the spatial distribution patterns of the positive region of dynamic stress peak value and static stress peak value are similarly asymmetric, which are basically identical with distribution features of aftershock. The dynamic stress peak value and the static stress in the positive region are more than 0.1 MPa and 0.01 MPa of the triggering threshold, respectively, which indicates that the dynamic and static stresses are helpful for the occurrence of aftershock. This suggests that both influences of dynamic and static stresses should be con- sidered other than only either of them when studying aftershock triggering in near field. 展开更多
关键词 武定地震 动态库仑破裂应力变化 余震 动态应力触发
在线阅读 下载PDF
A numerical study of 1-D nonlinear P-wave propagation in solid 被引量:10
20
作者 郑海山 张中杰 杨宝俊 《地震学报》 CSCD 北大核心 2004年第1期77-83,共7页
Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlin... Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlinear solid media by the numerical method. Distinctly different from the case of numerical modeling of linear elastic wave, there may be several difficulties in the numerical treatment to the nonlinear partial differential equation, such as the steep gradients, shocks and unphysical oscillations. All of them are the great obstacles to the stability and conver-gence of numerical calculation. Fortunately, the comparative study on the modeling of nonlinear wave by the two FD schemes presented in the paper can provide us with an easy method to keep the stability and convergence in the calculation field when the product of the absolute value of nonlinear coefficient and the value of u/x are small enough, namely, the value of bu/x is much smaller than 1. Several results are founded in the numerical study of nonlinear P-wave propagation, such as the waveform aberration, the generation and growth of harmonic wave and the energy redistribution among different frequency components. All of them will be more violent when the initial amplitude A0 is larger or the nonlinearity of medium is stronger. Correspondingly, we have found that the nonlinear P-wave propagation velocity will change with different initial frequency f of source wave or the wave velocity c (equal to the P-wave velocity in the same medium without considering nonlinearity). 展开更多
关键词 数值模拟 精度 中心差分格式 扰动 非线性波
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部