Karapınar region(Konya,Türkiye)is one of the important regions of the world in terms of sinkhole formations.The research aimed to map the sinkholes in detail,to determine their spatial distribution and geometrica...Karapınar region(Konya,Türkiye)is one of the important regions of the world in terms of sinkhole formations.The research aimed to map the sinkholes in detail,to determine their spatial distribution and geometrical parameters.For this purpose,the long axes,short axes,depths and the proximity to settlements of the sinkholes were measured and their circumferences and areas were calculated.During the studies,the relationship of the sinkholes with lithology,their cross sections,shapes and the related structures were determined and the sinkholes were divided into five main groups as following:Basement rock sinkholes,Obruk Plateau sinkholes,Seyithacı sinkholes,Siyeklik sinkholes and Basin sinkholes.The d/l ratios of each sinkhole group were separately determined and interpreted.Accordingly,most of the d/l ratios are smaller than 0.2.Namely,the long axes are higher than the depth and it indicates that the shallow and wide sinkholes are common in the region.It has been determined that the fracture systems in the region,as well as the lithology and groundwater factors,are quite effective in the formation and distribution of the sinkholes in the Karapınar region.Considering the distance of the sinkholes to the settlements,Seyithac?sinkholes are the most risky group in the region because they are deep and close to the settlements.展开更多
This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility ...This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility of spatial identification of cave spaces using surface geophysical methods due to the specific engineering-geological conditions of a thick surface layer of anthropogenic fill containing highly heterogeneous anthropogenic material.Its maximum thickness is 3 m.Another specificific condition of the study area is its location in the built-up area,due to which the applicability of geophysical methods was limited.The article contains methodological recommendations to be used in analogous geological conditions with karst structures topped with anthropogenic fill,which complicates the identification of cave spaces.The recommended solution herein is the identification of the cave system using underground mapping of the karst and its projection onto the surface for which surface geophysical methods have been combined.展开更多
Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding ...Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.展开更多
The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, t...The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, the relationship between relevant geological information and the geological environment is vital for foundation engineering purposes, especially where demanding structures are involved. This information is most conveniently structured when accumulated information concerning engineering-geological zones is utilized. This necessarily includes knowledge of rock workability and also of the pre-Quaternary bedrock, and these characteristics were then related to the current built-up area and future development according to the land-use plans in a case study are from the Petrvald Region (Czech Republic). The geological environment of area has been severely influenced by anthropogenic effects of deep black coal mining. Results of this research showed that future development should be founded on spoil banks, dumps, and settling basins. According to the land-use plan, this zone occupies 44.9% of the area of interest, and its materials predominantly emanate from mining in the Ostrava-Karvina Coal District. For future foundation structures planned there, it is imperative to consult detailed engineering-geological study. However, attention to and reliance on this necessity is not reflected in the existing land-use plan.展开更多
The Edikan Mine,which consists of Fobinso and Esuajah gold deposits,lies within the Asankrangwa Gold Belt of the Birimian Supergroup in the Kumasi Basin.The metasedimentary rocks in the Basins and the faulted metavolc...The Edikan Mine,which consists of Fobinso and Esuajah gold deposits,lies within the Asankrangwa Gold Belt of the Birimian Supergroup in the Kumasi Basin.The metasedimentary rocks in the Basins and the faulted metavolcanic rocks in the Belts that make up the Birimian Supergroup were intruded by granitoids during the Eburnean Orogeny.This research aims to classify granitoids in the Edikan Mine and ascertain the petrogenetic and geochemical characteristics of some auriferous granitoids in the wider Kumasi Basin,Ghana,to understand the implications for geodynamic settings.A multi-methods approach involving field studies,petrographic studies,and whole-rock geochemical analysis was used to achieve the goal of the study.Petrographic studies revealed a relatively high abundance of plagioclase and a low percentage of K-feldspars(anorthoclase and orthoclase)in the Fobinso samples,suggesting that the samples are granodioritic in nature,while the Esuajah samples showed relatively low plagioclase abundance and a high percentage in K-feldspars,indicating that they are granitic.The granitoids from the study areas are co-magmatic.The granitoids in Esuajah and Fobinso are generally enriched in large ion lithophile elements and light rare earth elements than high field strength elements,middle rare earth elements,and heavy rare earth elements,indicating mixing with crustal sources during the evolution of the granitoids.The granitoids were tectonically formed in a syn-collisional+VAG setting,which implies that they were formed in the subduction zone setting.Fobinso granodiorites showed S-type signatures with evidence of extensive crustal contamination,while the Esuajah granites showed I-type signatures with little or no crustal contamination and are peraluminous.Gold mineralization in the study area is structurally and lithologically controlled with shear zones,faulting,and veining as the principal structures controlling the mineralization.The late-stage vein,V3,in the Edikan Mine is characterized by a low vein angle and is mineralized.展开更多
With recent technological advancements,tunnel boring machines(TBM)have developed and exhibited high performance in large diameters and weak ground conditions.Tunnels are crucial structures that significantly influence...With recent technological advancements,tunnel boring machines(TBM)have developed and exhibited high performance in large diameters and weak ground conditions.Tunnels are crucial structures that significantly influence the timelines of highway and railway projects.Therefore,the construction of tunnels with TBMs becomes a preferred option.In this study,a comparative analysis between TBM and the New Austrian Tunneling Method(NATM)for tunnel construction is performed in the construction of the T1 tunnel with a diameter of 13 m,which is the longest tunnel in the E?me-Salihli section of Ankara-izmir High-Speed Railway Project(Türkiye).The selection of TBM type,measures taken in problematic sections,and application issues of TBM are discussed.The impact of correct description of geological and geotechnical conditions on both selection and performance of TBM is presented.An earth pressure balanced type TBM is chosen for the construction of the T1 tunnel.Because of the additional engineering measures taken before excavation in problematic areas,the tunnel was completed with great success within the initially planned timeframe.From this point of view,this study is an important case and may contribute to worldwide tunneling literature.展开更多
The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,...The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites.展开更多
The Afyon-Akşehir and Sinanpaşa grabens,located in the eastern part of the Akşehir-Simav Fault System,are important sedimentary basins in the western Anatolia,Türkiye.This region,particularly the western of Afyon...The Afyon-Akşehir and Sinanpaşa grabens,located in the eastern part of the Akşehir-Simav Fault System,are important sedimentary basins in the western Anatolia,Türkiye.This region,particularly the western of Afyon-Akşehir Graben,is a significant region known for its geothermal potential.The study focuses on analyzing gravity data to identify structural elements and examine the geological structures in the basins.The edge detection and enhancement techniques such as total horizontal gradient,tilt angle of the total horizontal gradient,enhanced dip angle and curvature analysis were used to investigate the structural lineaments in the area.Furthermore,2D/3D gravity modeling techniques were utilized to investigate the sedimentary depths of the Afyon-Akşehir and Sinanpaşa grabens.Based on the findings from the edge detection studies,three distinct linear features were highlighted in addition to previously identified geological structures.3D gravity inversion modeling reveals sedimentary basin depths of up to 470 m in Sinanpaşa Graben and 720 m in the western Afyon-Akşehir Graben.As a result of the structural mapping and 2D/3D gravity modeling studies,a structural uplift that may be linked to geothermal activity was detected among the local depressions in the Afyon-Akşehir Graben.The obtained features may be of potential interest for geothermal exploration;therefore,further investigations using additional geophysical data are recommended.展开更多
The traditional Green-Ampt model does not accurately represent the infiltration behavior of clay soils.Infiltration in clay is influenced by low hydraulic conductivity,strong capillary forces,and a gradual transition ...The traditional Green-Ampt model does not accurately represent the infiltration behavior of clay soils.Infiltration in clay is influenced by low hydraulic conductivity,strong capillary forces,and a gradual transition zone between saturated and unsaturated zones.These factors often lead to overestimated infiltration rates and underestimated infiltration durations.Therefore,it is necessary to improve the model to better reflect the characteristics of clay infiltration and enhance its predictive accuracy and practical applicability.This study conducts hydraulic characterization tests,one-dimensional soil column rainfall infiltration experiments,and numerical analysis on a representative clay sampled from Wuhan,China,to investigate infiltration behaviors under varying rainfall intensities and initial moisture conditions.The study reveals that the proportion of the transition layer within the wetting layer decreases with increasing wetting front depth,following a power-law function.Under the same initial moisture content,this proportion tends to converge to a stable value regardless of rainfall intensity.In contrast,under the same rainfall intensity,a higher initial moisture content leads to a larger proportion of the transition layer at a given wetting front depth.Based on the NMR curve,the unsaturated permeability coefficients corresponding to different volumetric water contents of clay can be obtained quickly,accurately,and at low cost.By utilizing the unsaturated permeability coefficient prediction model based on the nuclear magnetic resonance(NMR)curve,the study refines the computational method for the equivalent permeability coefficient in the wetting layer during clay rainfall infiltration,and proposes an improved clay Green-Ampt infiltration model that considers the saturated-unsaturated differentiation layer and the dynamic variation of its equivalent permeability coefficient under continuous rainfall conditions.The computational results of the improved model were compared with measured infiltration data,numerical simulations,and predictions from the traditional GA model.The results indicate that the improved model effectively captures the dynamic variation between the transition layer and wetting layer and provides more accurate predictions of wetting front depth in clay,with an accuracy approximately 68.36%higher than that of the traditional GA model.展开更多
Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil wate...Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.展开更多
In this study, the geological, petrographical properties of rhyolitic tuffs exposed around ?an-Etili in the Biga Peninsula (NW Turkey) which are pyroclastic products of Late Oligocene-Early Miocene aged ?an Volcanism ...In this study, the geological, petrographical properties of rhyolitic tuffs exposed around ?an-Etili in the Biga Peninsula (NW Turkey) which are pyroclastic products of Late Oligocene-Early Miocene aged ?an Volcanism were investigated, also physical and mechanical characteristics of tuffs introduced and tried to determine the impact on engineering properties of petrographical features. In the region, rhyolitic tuffs called locally “?an stone” have been used as covering and building stones for many years. These tuffs generally have light yellowish, beige, brown colored and different patterns with light yellowish, cream, reddish and brown colors caused by iron oxidation of hydrothermal alteration. They are preferred as coatings and decorative stone with these patterns. ?an stone which consisted of rhyolitic composition, lithic and locally crystalline tuffs has compact structure. The mineral assemblage of tuffs is mainly composed of quartz, plagioclase, rarely biotite, amphibole (hornblende) phenocrystals and opaque mineral with particles of volcanic glass and lithic fragments. Not only petrographical and geochemical analyses were carried out but also standard rock mechanic tests (unit weight, specific gravity, porosity, water absorption and uniaxial compressive strength) on rhyolitic tuffs samples collected from four different quarries (Hoppa Hill, Halilaga, Uzunalan, Dereoba). Simple regression analysis of test results obtained from four different regions and correlations were found good correlation between engineering proper- ties and the petrographical and chemical properties of rhyolitic tuffs.展开更多
A multidisciplinary approach combining multiscale geological-structural analyses(from field to microscale) and clay mineral transformations(clay mineralogy, illite and chlorite "crystallinity" and b cell dim...A multidisciplinary approach combining multiscale geological-structural analyses(from field to microscale) and clay mineral transformations(clay mineralogy, illite and chlorite "crystallinity" and b cell dimension(b_(0)) of K-white mica) was adopted to unravel the tectono-metamorphic evolution of low-and very low-grade tectono-metamorphic units from the Intra-Pontide suture zone in northern Turkey. The mineralogical study allowed to better evaluate the structural stacking outlined during the geological mapping, leading to distinguish three tectono-metamorphic units, two in epizone(Daday and Emirkoy units) and one in anchizone(Cifter Unit) metamorphic conditions. The mesostructural and microstructural analyses suggest a polyphase tectonic-metamorphic evolution. The different macroscopic features observed between the two units characterized by the same epizone metamorphism, can be justified by the evidence that these metamorphic conditions were acquired during the last stages of exhumation in the Daday Unit, while they constrained the metamorphic-peak conditions in the Emirkoy Unit. Contemporary analyses and comparison between structural and mineralogical data have thus proven to be a powerful tool to investigate the low-grade and very low-grade metamorphic environments, allowing at the same time to solve the apparent contradictions deriving from the mineralogical study and to significantly improve the detail of the geological mapping in the field.展开更多
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river...Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river systems is highly sensitive to tectonically induced changes, and it often preserves the records of the formation and progression of most tectono-geomorphic processes within its boundaries. Therefore, the evolution of landforms is a consequence of the evolution of individual drainage basins in which they are formed. Assessing the rates of tectonic deformation using geomorphic data is a traditionally adopted method to characterize the nature of active faults. Globally, the Digital Elevation Model(DEM) is widely used as a crucial tool to analyze the morphotectonic features of drainage basins. In this study, some geomorphic indices were applied to investigate the impact of tectonism on landscape along the Karahay?t Fault and its associated drainage areas. These geomorphic indices are mountain front sinuosity(Smf values between 1.17-1.52), valley floor width-to-height ratio(Vf values between 0.25-1.46), basin asymmetry factor(AF values between 15-72), drainage basin shape(Bs values between 3.18-6.01), hypsometric integral and curve(HI values between 0.32-047), channel sinuosity(S values between 1-1.6), normalized steepness index(Ksn values between 1-390) and Chi integral(χ values between 200-4400). The development of drainage areas on the hanging wall and footwall block of the Karahayit Fault differs depending on the uplift. The drainage areas developed on the hanging wall present different patterns depending on the regional uplift caused by the fault. This reveals that the fault contributed significantly to the development of drainage areas and regional uplift in the region. In addition, the maximum earthquake magnitude that may occur in the future on the Karahayit Fault, whose activity is supported by geomorphic indices, is calculated as 6.23. Since an earthquake of this magnitude may cause loss of life and property in the region, precautions should be taken.展开更多
The Kale-Yeşilyurt Fault Zone(KYFZ)exhibits recent tectonic reactivation,which is critical for understanding regional seismicity and the geodynamic evolution of the East Anatolian Fault System(EAFS).This study integra...The Kale-Yeşilyurt Fault Zone(KYFZ)exhibits recent tectonic reactivation,which is critical for understanding regional seismicity and the geodynamic evolution of the East Anatolian Fault System(EAFS).This study integrates kinematic and morphometric analyses to explore the reactivation processes along the fault.Kinematic analysis,incorporating fault-slip data and stress inversion,reveals complex deformation patterns characterized by strike-slip and extensional movements,with NE-SW trending minimum stress axes.February 6,2023,earthquake sequence highlighted significant stress accumulation along the Kale-Yeşilyurt and Göksun segments.Fieldwork and morphometric analyses,including mountain front sinuosity(Smf)and drainage basin analysis,suggest variable uplift rates and tectonic forces,with an asymmetric westward-directed uplift along the KYFZ.HI-HC index analysis underscores rapid uplift,particularly in the western basin,signaling ongoing tectonic and geomorphic activity.The normalized channel steepness index(Ksn)values reveal variations in erosion rates,providing insight into regional uplift patterns and knickpoint distribution.While morphometric indicators collectively point to high tectonic activity along the Yeşilyurt segment,the Kale segment exhibits particularly intense activity with a dominant normal fault component.The 2020 Sivrice earthquake and the 2023 earthquake doublet further emphasize the structural complexity of the fault system and underscore the KYFZ’s pivotal role in the active tectonics of the EAFS.Future research incorporating advanced geospatial technologies is vital for improving our understanding of tectonic processes,mitigating earthquake hazards,and enhancing seismic risk assessments.展开更多
The groundwaters within the ophiolite nappes in the southwestern part of Turkey have different physical and geochemical characteristics and are divided into five different groundwater facies.These are(1) Mg-HCO_(3),(2...The groundwaters within the ophiolite nappes in the southwestern part of Turkey have different physical and geochemical characteristics and are divided into five different groundwater facies.These are(1) Mg-HCO_(3),(2) Mg-HCO_(3)-CO_(3),(3) Mg-CO_(3)-HCO_(3),(4) Na-Ca-Cl-CO_(3),and(5) Ca-MgHCO_(3).The waters interact with ophiolites,mainly made up of basic-ultrabasic rocks,are characterized by alkaline and hyperalkaline character.Alkaline waters have high Mg,HCO_(3)contents and Mg/Ca ratio,and hyperalkaline water has high Na,Ca contents,and low Mg/Ca ratio.The waters in the study area formed by the interaction of meteoric waters with variously serpentinized ultramafic rocks under low-temperature conditions.Silicate weathering is the main hydrogeochemical process that plays a role in the chemical composition of water.Mg-HCO_(3)-type groundwaters are produced under open-system conditions with respect to CO_(2)due to meteoric water-serpentinized peridotite interactions in a shallow environment.Deep-seated groundwaters are Na-Ca-Cl-CO_(3)-type waters with high pH(TN-8 sample with p H 10.72),depleted in terms of Mg due to water-peridotite interaction under closed-system conditions with respect to CO_(2).Salda Lake with an alkaline character and high Mg and Na content is characterized by high evaporation and hydromagnesite deposition.展开更多
The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum ...The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.展开更多
In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them...In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them through acid leaching.In this study,a sequential alkaline-organic acid leaching was developed for the recovery of REEs from CFA.The effect of alkaline leaching using NaOH solution on the destructive ability of aluminosilicate glass,as well as the mineralogy and morphology changes of the resulting coal fly ash,was first studied.Furthermore,the effectiveness of alkaline leaching on the recovery ability of REEs through organic acid leaching was evaluated.The results show that the maximum leaching efficiency for Si and Al,which was obtained at the optimum alkaline leaching conditions,namely NaOH concentration of 10 mol/L,reaction temperature of 65℃,liquid/solid(L/S)ratio of 10 mL/g,and reaction time of 90 min,is 28%and 32%,respectively.The digestion reaction with NaOH lixiviants also causes coal fly ash to become more porous,making it advantageous in the organic acid-leaching process at the REEs recovery stage.The utilization of the desilicated residue produced from the digestion process in acid leaching effectively increases the overall REEs recovery from 32.2%to 77.6%.展开更多
The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
The Acıgöl Graben in SW Turkey,ca.50-55 km in length and 11-15 km in width,formed during the Miocene to Quaternary periods.This graben is bounded by active normal faults of MaymundağıFault(MF)to the northwest and...The Acıgöl Graben in SW Turkey,ca.50-55 km in length and 11-15 km in width,formed during the Miocene to Quaternary periods.This graben is bounded by active normal faults of MaymundağıFault(MF)to the northwest and the GemişFault Zone(GFZ)to the southeast that have triggered significant earthquakes,causing considerable damage.This study focuses on the Bozkurt segment of the MF,which caused a damaging earthquake(Mw 6.0)in 2019 and another significant earthquake in 1886 during historical times.A paleoseismological trench survey along the Bozkurt segment revealed at least two faulting events,with the last event producing a vertical displacement of 0.25 m.The Optical Stimulated Luminescence(OSL)dating indicates that the last earthquake occurred 3.13±0.33 ka BP,while the penultimate earthquake occurred 4.0±0.72 ka BP.These dates correspond to a long-term slip rate of approximately 0.36±0.11 mm/a and a mean recurrence interval of 2.08 ka,short-term slip rate 0.78±0.16 mm/a and recurrence interval of 0.96 ka,and compatible with the mean sedimentation rate of 0.26 mm/a,calculated from drill logs in Acıgöl basin-fill.Considering the 6 km length of the Bozkurt segment and its vertical displacement of 0.25 m in the last event,this segment has the potential to generate earthquakes ranging from 5.6 to 5.9 Mw.Long-term slip rates derived from geomorphological data are 0.56 mm/year to the north and 0.64 mm/a to the south of the graben,indicating higher subsidence on the southern margin.These rates are in accordance with the slip rates calculated from the paleoseismological trench survey and sedimentation rate from the drill-log.These indications show that the Bozkurt segment is an active Holocene fault with relatively long recurrence intervals and low-slip rate.Consequently,the paleoseismological studies in combination with geomorphological data are important tool to assess seismic hazards and to define the characteristics of individual fault segments.展开更多
基金supported by the Konya Provincial Directorate of Disaster and Emergency(AFAD)within the scope of the“Detection of the Sinkhole Around Karapınar”Project(No.2020K14-138637-2)。
文摘Karapınar region(Konya,Türkiye)is one of the important regions of the world in terms of sinkhole formations.The research aimed to map the sinkholes in detail,to determine their spatial distribution and geometrical parameters.For this purpose,the long axes,short axes,depths and the proximity to settlements of the sinkholes were measured and their circumferences and areas were calculated.During the studies,the relationship of the sinkholes with lithology,their cross sections,shapes and the related structures were determined and the sinkholes were divided into five main groups as following:Basement rock sinkholes,Obruk Plateau sinkholes,Seyithacı sinkholes,Siyeklik sinkholes and Basin sinkholes.The d/l ratios of each sinkhole group were separately determined and interpreted.Accordingly,most of the d/l ratios are smaller than 0.2.Namely,the long axes are higher than the depth and it indicates that the shallow and wide sinkholes are common in the region.It has been determined that the fracture systems in the region,as well as the lithology and groundwater factors,are quite effective in the formation and distribution of the sinkholes in the Karapınar region.Considering the distance of the sinkholes to the settlements,Seyithac?sinkholes are the most risky group in the region because they are deep and close to the settlements.
基金the support of the project(SP2017/22)which is the base of this articlepartially supported by the Slovak Research and Development Agency under contract No.APVV-0129-12the Scientific Grant Agency of the Ministry of Education,Science,Research and Sport of the Slovak Republic and the Slovak Academy of Sciences(VEGA)within the project No.1/0559/17 and APVV 1/0462/16。
文摘This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility of spatial identification of cave spaces using surface geophysical methods due to the specific engineering-geological conditions of a thick surface layer of anthropogenic fill containing highly heterogeneous anthropogenic material.Its maximum thickness is 3 m.Another specificific condition of the study area is its location in the built-up area,due to which the applicability of geophysical methods was limited.The article contains methodological recommendations to be used in analogous geological conditions with karst structures topped with anthropogenic fill,which complicates the identification of cave spaces.The recommended solution herein is the identification of the cave system using underground mapping of the karst and its projection onto the surface for which surface geophysical methods have been combined.
基金funding support from the NSFC Key Projects of International Cooperation and Exchanges (Grant No.42020104006)the National Key Research and Development Program of China (Grant No.2023YFC3007001)the National Natural Science Foundation of China (Grant No.42307227).
文摘Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.
基金Czech Science Foundation for their support of project(GACR-105/09/1631)
文摘The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, the relationship between relevant geological information and the geological environment is vital for foundation engineering purposes, especially where demanding structures are involved. This information is most conveniently structured when accumulated information concerning engineering-geological zones is utilized. This necessarily includes knowledge of rock workability and also of the pre-Quaternary bedrock, and these characteristics were then related to the current built-up area and future development according to the land-use plans in a case study are from the Petrvald Region (Czech Republic). The geological environment of area has been severely influenced by anthropogenic effects of deep black coal mining. Results of this research showed that future development should be founded on spoil banks, dumps, and settling basins. According to the land-use plan, this zone occupies 44.9% of the area of interest, and its materials predominantly emanate from mining in the Ostrava-Karvina Coal District. For future foundation structures planned there, it is imperative to consult detailed engineering-geological study. However, attention to and reliance on this necessity is not reflected in the existing land-use plan.
文摘The Edikan Mine,which consists of Fobinso and Esuajah gold deposits,lies within the Asankrangwa Gold Belt of the Birimian Supergroup in the Kumasi Basin.The metasedimentary rocks in the Basins and the faulted metavolcanic rocks in the Belts that make up the Birimian Supergroup were intruded by granitoids during the Eburnean Orogeny.This research aims to classify granitoids in the Edikan Mine and ascertain the petrogenetic and geochemical characteristics of some auriferous granitoids in the wider Kumasi Basin,Ghana,to understand the implications for geodynamic settings.A multi-methods approach involving field studies,petrographic studies,and whole-rock geochemical analysis was used to achieve the goal of the study.Petrographic studies revealed a relatively high abundance of plagioclase and a low percentage of K-feldspars(anorthoclase and orthoclase)in the Fobinso samples,suggesting that the samples are granodioritic in nature,while the Esuajah samples showed relatively low plagioclase abundance and a high percentage in K-feldspars,indicating that they are granitic.The granitoids from the study areas are co-magmatic.The granitoids in Esuajah and Fobinso are generally enriched in large ion lithophile elements and light rare earth elements than high field strength elements,middle rare earth elements,and heavy rare earth elements,indicating mixing with crustal sources during the evolution of the granitoids.The granitoids were tectonically formed in a syn-collisional+VAG setting,which implies that they were formed in the subduction zone setting.Fobinso granodiorites showed S-type signatures with evidence of extensive crustal contamination,while the Esuajah granites showed I-type signatures with little or no crustal contamination and are peraluminous.Gold mineralization in the study area is structurally and lithologically controlled with shear zones,faulting,and veining as the principal structures controlling the mineralization.The late-stage vein,V3,in the Edikan Mine is characterized by a low vein angle and is mineralized.
文摘With recent technological advancements,tunnel boring machines(TBM)have developed and exhibited high performance in large diameters and weak ground conditions.Tunnels are crucial structures that significantly influence the timelines of highway and railway projects.Therefore,the construction of tunnels with TBMs becomes a preferred option.In this study,a comparative analysis between TBM and the New Austrian Tunneling Method(NATM)for tunnel construction is performed in the construction of the T1 tunnel with a diameter of 13 m,which is the longest tunnel in the E?me-Salihli section of Ankara-izmir High-Speed Railway Project(Türkiye).The selection of TBM type,measures taken in problematic sections,and application issues of TBM are discussed.The impact of correct description of geological and geotechnical conditions on both selection and performance of TBM is presented.An earth pressure balanced type TBM is chosen for the construction of the T1 tunnel.Because of the additional engineering measures taken before excavation in problematic areas,the tunnel was completed with great success within the initially planned timeframe.From this point of view,this study is an important case and may contribute to worldwide tunneling literature.
基金supported by the National Key Research&Development Program of China(Grant No.2023YFC3008404)the Key Laboratory of Earth Fissures Geological Disaster,Ministry of Natural Resources,China(Grant Nos.EFGD20240609 and EFGD20240610).
文摘The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites.
文摘The Afyon-Akşehir and Sinanpaşa grabens,located in the eastern part of the Akşehir-Simav Fault System,are important sedimentary basins in the western Anatolia,Türkiye.This region,particularly the western of Afyon-Akşehir Graben,is a significant region known for its geothermal potential.The study focuses on analyzing gravity data to identify structural elements and examine the geological structures in the basins.The edge detection and enhancement techniques such as total horizontal gradient,tilt angle of the total horizontal gradient,enhanced dip angle and curvature analysis were used to investigate the structural lineaments in the area.Furthermore,2D/3D gravity modeling techniques were utilized to investigate the sedimentary depths of the Afyon-Akşehir and Sinanpaşa grabens.Based on the findings from the edge detection studies,three distinct linear features were highlighted in addition to previously identified geological structures.3D gravity inversion modeling reveals sedimentary basin depths of up to 470 m in Sinanpaşa Graben and 720 m in the western Afyon-Akşehir Graben.As a result of the structural mapping and 2D/3D gravity modeling studies,a structural uplift that may be linked to geothermal activity was detected among the local depressions in the Afyon-Akşehir Graben.The obtained features may be of potential interest for geothermal exploration;therefore,further investigations using additional geophysical data are recommended.
基金financial support from the Joint Funds of the National Nature Science Foundation of China(No.U22A20232)Supported by Open Project Funding of Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes,Ministry of Education(HGKFZ07)+2 种基金the National Natural Science Foundation of China(No.51978249)Innovation Research Team Project of the Hubei Provincial Department of Science and Technology(2025AFA020)the International Collaborative Research Fund for Young Scholars in the Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes.
文摘The traditional Green-Ampt model does not accurately represent the infiltration behavior of clay soils.Infiltration in clay is influenced by low hydraulic conductivity,strong capillary forces,and a gradual transition zone between saturated and unsaturated zones.These factors often lead to overestimated infiltration rates and underestimated infiltration durations.Therefore,it is necessary to improve the model to better reflect the characteristics of clay infiltration and enhance its predictive accuracy and practical applicability.This study conducts hydraulic characterization tests,one-dimensional soil column rainfall infiltration experiments,and numerical analysis on a representative clay sampled from Wuhan,China,to investigate infiltration behaviors under varying rainfall intensities and initial moisture conditions.The study reveals that the proportion of the transition layer within the wetting layer decreases with increasing wetting front depth,following a power-law function.Under the same initial moisture content,this proportion tends to converge to a stable value regardless of rainfall intensity.In contrast,under the same rainfall intensity,a higher initial moisture content leads to a larger proportion of the transition layer at a given wetting front depth.Based on the NMR curve,the unsaturated permeability coefficients corresponding to different volumetric water contents of clay can be obtained quickly,accurately,and at low cost.By utilizing the unsaturated permeability coefficient prediction model based on the nuclear magnetic resonance(NMR)curve,the study refines the computational method for the equivalent permeability coefficient in the wetting layer during clay rainfall infiltration,and proposes an improved clay Green-Ampt infiltration model that considers the saturated-unsaturated differentiation layer and the dynamic variation of its equivalent permeability coefficient under continuous rainfall conditions.The computational results of the improved model were compared with measured infiltration data,numerical simulations,and predictions from the traditional GA model.The results indicate that the improved model effectively captures the dynamic variation between the transition layer and wetting layer and provides more accurate predictions of wetting front depth in clay,with an accuracy approximately 68.36%higher than that of the traditional GA model.
基金supported by the National Natural Science Foundation of China(Grant No.41825018)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090402)the National Natural Science Foundation of China(Grant No.42141009).
文摘Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.
基金financially supported by The Scientific and Technological Research Council of Turkey(TUBI-TAK.Project No.105Y114)
文摘In this study, the geological, petrographical properties of rhyolitic tuffs exposed around ?an-Etili in the Biga Peninsula (NW Turkey) which are pyroclastic products of Late Oligocene-Early Miocene aged ?an Volcanism were investigated, also physical and mechanical characteristics of tuffs introduced and tried to determine the impact on engineering properties of petrographical features. In the region, rhyolitic tuffs called locally “?an stone” have been used as covering and building stones for many years. These tuffs generally have light yellowish, beige, brown colored and different patterns with light yellowish, cream, reddish and brown colors caused by iron oxidation of hydrothermal alteration. They are preferred as coatings and decorative stone with these patterns. ?an stone which consisted of rhyolitic composition, lithic and locally crystalline tuffs has compact structure. The mineral assemblage of tuffs is mainly composed of quartz, plagioclase, rarely biotite, amphibole (hornblende) phenocrystals and opaque mineral with particles of volcanic glass and lithic fragments. Not only petrographical and geochemical analyses were carried out but also standard rock mechanic tests (unit weight, specific gravity, porosity, water absorption and uniaxial compressive strength) on rhyolitic tuffs samples collected from four different quarries (Hoppa Hill, Halilaga, Uzunalan, Dereoba). Simple regression analysis of test results obtained from four different regions and correlations were found good correlation between engineering proper- ties and the petrographical and chemical properties of rhyolitic tuffs.
基金supported by the Universitàdi Pisa (Darius, PRA 2018, PRIN 2008 and PRIN 2010-11 projects) to Michele Marronithe CNR-IGG,Pisa to Alessandro Ellero。
文摘A multidisciplinary approach combining multiscale geological-structural analyses(from field to microscale) and clay mineral transformations(clay mineralogy, illite and chlorite "crystallinity" and b cell dimension(b_(0)) of K-white mica) was adopted to unravel the tectono-metamorphic evolution of low-and very low-grade tectono-metamorphic units from the Intra-Pontide suture zone in northern Turkey. The mineralogical study allowed to better evaluate the structural stacking outlined during the geological mapping, leading to distinguish three tectono-metamorphic units, two in epizone(Daday and Emirkoy units) and one in anchizone(Cifter Unit) metamorphic conditions. The mesostructural and microstructural analyses suggest a polyphase tectonic-metamorphic evolution. The different macroscopic features observed between the two units characterized by the same epizone metamorphism, can be justified by the evidence that these metamorphic conditions were acquired during the last stages of exhumation in the Daday Unit, while they constrained the metamorphic-peak conditions in the Emirkoy Unit. Contemporary analyses and comparison between structural and mineralogical data have thus proven to be a powerful tool to investigate the low-grade and very low-grade metamorphic environments, allowing at the same time to solve the apparent contradictions deriving from the mineralogical study and to significantly improve the detail of the geological mapping in the field.
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
文摘Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river systems is highly sensitive to tectonically induced changes, and it often preserves the records of the formation and progression of most tectono-geomorphic processes within its boundaries. Therefore, the evolution of landforms is a consequence of the evolution of individual drainage basins in which they are formed. Assessing the rates of tectonic deformation using geomorphic data is a traditionally adopted method to characterize the nature of active faults. Globally, the Digital Elevation Model(DEM) is widely used as a crucial tool to analyze the morphotectonic features of drainage basins. In this study, some geomorphic indices were applied to investigate the impact of tectonism on landscape along the Karahay?t Fault and its associated drainage areas. These geomorphic indices are mountain front sinuosity(Smf values between 1.17-1.52), valley floor width-to-height ratio(Vf values between 0.25-1.46), basin asymmetry factor(AF values between 15-72), drainage basin shape(Bs values between 3.18-6.01), hypsometric integral and curve(HI values between 0.32-047), channel sinuosity(S values between 1-1.6), normalized steepness index(Ksn values between 1-390) and Chi integral(χ values between 200-4400). The development of drainage areas on the hanging wall and footwall block of the Karahayit Fault differs depending on the uplift. The drainage areas developed on the hanging wall present different patterns depending on the regional uplift caused by the fault. This reveals that the fault contributed significantly to the development of drainage areas and regional uplift in the region. In addition, the maximum earthquake magnitude that may occur in the future on the Karahayit Fault, whose activity is supported by geomorphic indices, is calculated as 6.23. Since an earthquake of this magnitude may cause loss of life and property in the region, precautions should be taken.
文摘The Kale-Yeşilyurt Fault Zone(KYFZ)exhibits recent tectonic reactivation,which is critical for understanding regional seismicity and the geodynamic evolution of the East Anatolian Fault System(EAFS).This study integrates kinematic and morphometric analyses to explore the reactivation processes along the fault.Kinematic analysis,incorporating fault-slip data and stress inversion,reveals complex deformation patterns characterized by strike-slip and extensional movements,with NE-SW trending minimum stress axes.February 6,2023,earthquake sequence highlighted significant stress accumulation along the Kale-Yeşilyurt and Göksun segments.Fieldwork and morphometric analyses,including mountain front sinuosity(Smf)and drainage basin analysis,suggest variable uplift rates and tectonic forces,with an asymmetric westward-directed uplift along the KYFZ.HI-HC index analysis underscores rapid uplift,particularly in the western basin,signaling ongoing tectonic and geomorphic activity.The normalized channel steepness index(Ksn)values reveal variations in erosion rates,providing insight into regional uplift patterns and knickpoint distribution.While morphometric indicators collectively point to high tectonic activity along the Yeşilyurt segment,the Kale segment exhibits particularly intense activity with a dominant normal fault component.The 2020 Sivrice earthquake and the 2023 earthquake doublet further emphasize the structural complexity of the fault system and underscore the KYFZ’s pivotal role in the active tectonics of the EAFS.Future research incorporating advanced geospatial technologies is vital for improving our understanding of tectonic processes,mitigating earthquake hazards,and enhancing seismic risk assessments.
文摘The groundwaters within the ophiolite nappes in the southwestern part of Turkey have different physical and geochemical characteristics and are divided into five different groundwater facies.These are(1) Mg-HCO_(3),(2) Mg-HCO_(3)-CO_(3),(3) Mg-CO_(3)-HCO_(3),(4) Na-Ca-Cl-CO_(3),and(5) Ca-MgHCO_(3).The waters interact with ophiolites,mainly made up of basic-ultrabasic rocks,are characterized by alkaline and hyperalkaline character.Alkaline waters have high Mg,HCO_(3)contents and Mg/Ca ratio,and hyperalkaline water has high Na,Ca contents,and low Mg/Ca ratio.The waters in the study area formed by the interaction of meteoric waters with variously serpentinized ultramafic rocks under low-temperature conditions.Silicate weathering is the main hydrogeochemical process that plays a role in the chemical composition of water.Mg-HCO_(3)-type groundwaters are produced under open-system conditions with respect to CO_(2)due to meteoric water-serpentinized peridotite interactions in a shallow environment.Deep-seated groundwaters are Na-Ca-Cl-CO_(3)-type waters with high pH(TN-8 sample with p H 10.72),depleted in terms of Mg due to water-peridotite interaction under closed-system conditions with respect to CO_(2).Salda Lake with an alkaline character and high Mg and Na content is characterized by high evaporation and hydromagnesite deposition.
基金funded by the State Key Petroleum Lab of Petroleum Resources and Prospecting at China University of Petroleum (Beijing)
文摘The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.
基金Project supported by the Ministry of Research,Technology and Higher Education,Republic of Indonesia(0386/E4/BP/2021)Universitas Gadjah Mada(1501407/UN1.FTK/SK/HK/2022)。
文摘In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them through acid leaching.In this study,a sequential alkaline-organic acid leaching was developed for the recovery of REEs from CFA.The effect of alkaline leaching using NaOH solution on the destructive ability of aluminosilicate glass,as well as the mineralogy and morphology changes of the resulting coal fly ash,was first studied.Furthermore,the effectiveness of alkaline leaching on the recovery ability of REEs through organic acid leaching was evaluated.The results show that the maximum leaching efficiency for Si and Al,which was obtained at the optimum alkaline leaching conditions,namely NaOH concentration of 10 mol/L,reaction temperature of 65℃,liquid/solid(L/S)ratio of 10 mL/g,and reaction time of 90 min,is 28%and 32%,respectively.The digestion reaction with NaOH lixiviants also causes coal fly ash to become more porous,making it advantageous in the organic acid-leaching process at the REEs recovery stage.The utilization of the desilicated residue produced from the digestion process in acid leaching effectively increases the overall REEs recovery from 32.2%to 77.6%.
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
文摘The Acıgöl Graben in SW Turkey,ca.50-55 km in length and 11-15 km in width,formed during the Miocene to Quaternary periods.This graben is bounded by active normal faults of MaymundağıFault(MF)to the northwest and the GemişFault Zone(GFZ)to the southeast that have triggered significant earthquakes,causing considerable damage.This study focuses on the Bozkurt segment of the MF,which caused a damaging earthquake(Mw 6.0)in 2019 and another significant earthquake in 1886 during historical times.A paleoseismological trench survey along the Bozkurt segment revealed at least two faulting events,with the last event producing a vertical displacement of 0.25 m.The Optical Stimulated Luminescence(OSL)dating indicates that the last earthquake occurred 3.13±0.33 ka BP,while the penultimate earthquake occurred 4.0±0.72 ka BP.These dates correspond to a long-term slip rate of approximately 0.36±0.11 mm/a and a mean recurrence interval of 2.08 ka,short-term slip rate 0.78±0.16 mm/a and recurrence interval of 0.96 ka,and compatible with the mean sedimentation rate of 0.26 mm/a,calculated from drill logs in Acıgöl basin-fill.Considering the 6 km length of the Bozkurt segment and its vertical displacement of 0.25 m in the last event,this segment has the potential to generate earthquakes ranging from 5.6 to 5.9 Mw.Long-term slip rates derived from geomorphological data are 0.56 mm/year to the north and 0.64 mm/a to the south of the graben,indicating higher subsidence on the southern margin.These rates are in accordance with the slip rates calculated from the paleoseismological trench survey and sedimentation rate from the drill-log.These indications show that the Bozkurt segment is an active Holocene fault with relatively long recurrence intervals and low-slip rate.Consequently,the paleoseismological studies in combination with geomorphological data are important tool to assess seismic hazards and to define the characteristics of individual fault segments.