The paper presents the research results of using an innovative method to reclaim the waste moulding sands containing water glass. Two of the examined processes are connected with "dry" or "wet" act...The paper presents the research results of using an innovative method to reclaim the waste moulding sands containing water glass. Two of the examined processes are connected with "dry" or "wet" activation of inorganic binder in waste moulding sand mixtures physically hardened by microwave radiation. The sand mixtures consisting of high-silica sand and water-glass with average molar module 2.5, were subjected to the following cyclical process: mixing the components, compacting, microwave heating, cooling-down, thermally loading the mould to 800 °C, cooling-down to ambient temperature, and knocking-out. After being knocked-out, the waste moulding sands were subjected to either dry or wet activation of the binder. To activate thermally treated inorganic binder, each of the examined processes employed the surface phenomenon usually associated to mechanical reclamation. The study also covered possible use of some elements of wet reclamation to rehydrate waste binder. To evaluate the effectiveness of the two proposed methods of waste binder activation, selected strength and technological parameters were measured. After each subsequent processing cycle, the permeability, tensile strength and bending strength were determined. In addition, the surface of activated sand grains was examined with a scanning electron microscope. Analysis of the results indicates that it is possible to re-activate the used binder such as sodium silicate, and to stabilize the strength parameters in both activation processes. Permeability of the refreshed moulding sands strongly depends on the surface condition of high-silica grains. The wet activation process by wetting and buffering knocked-out moulding sands in closed humid environment makes it possible to reduce the content of refreshing additive in water-glass. The moulding sands cyclically prepared in both processes do not require the addition of fresh high-silica sand. The relatively high quality achieved in the refreshed moulding sands allows them to be reused for manufacture of next moulds. Thus, the two proposed methods for cyclically processing used moulding sands containing sodium silicate, subject to microwave hardening, are suitable for economic and ecological circulation moulding mixtures.展开更多
The grain density,Nv,in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling,ΔT,of a liquid alloy.This type of function depends on the characteristics of heterogeneous nucl...The grain density,Nv,in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling,ΔT,of a liquid alloy.This type of function depends on the characteristics of heterogeneous nucleation sites and number of SiC present in the alloy.The aim of this paper was selection of parameters for the model describing the relationship between the grain density of primary phase and undercooling.This model in connection with model of crystallisation,which is based on chemical elements diffusion and grain interface kinetics,can be used to predict casting quality and its microstructure.Nucleation models have parameters,which exact values are usually not known and sometimes even their physical meaning is under discussion.Those parameters can be obtained after mathematical analysis of the experimental data.The composites with 0,1,2,3 and 4wt.% of SiC particles were prepared.The AZ91 alloy was a matrix of the composite reinforcement SiC particles.This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple,to analyze the undercooling for different composites and thickness plates and its influence on the grain size.The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles,and undercooling with grain size.These values were used to approximate nucleation model adjustment parameters.Obtained model can be very useful in modelling composites microstructure.展开更多
Zn-Al alloys constitute an interesting group of foundry alloys. Due to a relatively low melting temperature, they allow a decrease in energy-consumption of the melting process and alloy preparation. The vibration damp...Zn-Al alloys constitute an interesting group of foundry alloys. Due to a relatively low melting temperature, they allow a decrease in energy-consumption of the melting process and alloy preparation. The vibration damping ability is one of the most interesting properties of the Zn-Al alloys. Zn-Al alloys are divided into two groups: the low-aluminium and high-aluminium alloys. The investigated Zn-10 wt.% Al(ZnAl10) alloy is representative of the high-aluminium alloys, which, on account of its tendency of forming coarse-grained structures, has rather low plastic properties, including elongation. In order to improve the plastic properties, a modification treatment is usually applied. The dependence of the damping coefficient of the ultrasound wave on the amount of the introduced inoculant was studied. Investigations were performed using the AlT i3C0.15 inoculant as the modifier of the ZnAl10 alloy. It was found that titanium additions, in a range from 25 to 100 ppm in relation to the melted charge mass, can reduce the damping coefficient value. An increase of the inoculant addition causes a rise of the damping coefficient, which is probably related to the scattering of the ultrasound wave on Al_3Ti and TiC particles introduced with the inoculant.展开更多
The results of research on influence of an irradiation of a liquid phase by nanosecond electromagnetic impulses(NEMI) on processes of crystallization and structurization,physicomechanical and operational properties of...The results of research on influence of an irradiation of a liquid phase by nanosecond electromagnetic impulses(NEMI) on processes of crystallization and structurization,physicomechanical and operational properties of copper,aluminium and alloys on their basis(bronze and silumin) were presented.展开更多
This work was carried out with the aim of using alloying and ageing processes to develop new alloys from grey cast iron that will have optimum properties suitable for the manufacturing of machine cutting tools. Four d...This work was carried out with the aim of using alloying and ageing processes to develop new alloys from grey cast iron that will have optimum properties suitable for the manufacturing of machine cutting tools. Four different alloys of grey cast iron with alloying composition of Fe-3% Al-2.5% Cr-2% Mo;Fe-3% Al-2% Cr-2% Mo;Fe-3% Al-2.5% Cr-1.5% Mo and Fe-3% Al-1.5% Cr-2% Mo were produced. The chemical analysis of both as-received base metal and produced alloys was determined using Spetro-CJRO Arc-Spectrometer. The microstructural properties and mechanical properties (hardness, impact toughness and ultimate tensile strength) of the produced alloys were determined for both as-cast samples and aged samples. The results showed that the addition of these alloying elements slightly decreased carbon, silicon and phosphorus content and thereby changed the hypereutectic cast iron to hypoeutectic by reducing the carbon equivalent. Also the morphology of graphite flake was changed as a result of the formation of nitrides and carbides of different phases. The results of the mechanical properties showed that the maximum hardness values obtained for each of the four alloys produced and aged at 300?C are 71.5 HRc, 69 HRc, 66.5 HRc and 65.4 HRc respectively. The maximum values for impact toughness obtained for each of the same produced alloys are 66 J, 63.6 J, 62 J and 60.3 J respectively. Also the maximum ultimate tensile strength values obtained for each of the alloys are 1380 N·mm-2, 1311 N·mm-2, 1260 N·mm-2 and 1190 N·mm-2. Comparing the properties obtained from the produced alloys with those of the commercial cutting tools, it was found that cutting tools manufactured from these produced alloys can compete favourably with cast cobalt tool, high speed steel (HSS) and tool steel.展开更多
Design of experiments (DoE) based on a linear regression model was used to develop an Aluminum Copper-based casting alloy. The main objectives of the development were the achievement of (1) a high strength at elevated...Design of experiments (DoE) based on a linear regression model was used to develop an Aluminum Copper-based casting alloy. The main objectives of the development were the achievement of (1) a high strength at elevated temperatures with (2) a low hot tearing tendency. Within the DoE, 17 different chemical compositions of the newly developed alloy AlCuMnCo(Ni) were cast, tested regarding hot tearing tendency and characterized in tensile tests up to 300 °C. Test results showed that the AlCuMnCo(Ni)-alloys from the DoE have high mechanical properties from ambient temperature up to 300 °C and thus feature a high thermal stability. It was found that the alloying elements Cu and Co increase the yield strength whereas Mn and Ni tend to increase the attainable elongation. Furthermore, some of the alloys showed no or a very low tendency to hot tearing a remarkable feature for Al-Cu alloys which are otherwise highly susceptible to hot tearing. The regression model that was developed from the test results fulfils a set of quality criteria and is therefore expected to provide reliable predictions. The predictive ability of the model was validated by casting and testing a sweet spot alloy. Results show that the model is sufficient for predicting the mechanical properties from ambient temperature to 250 °C. Furthermore, the sweet spot alloy surpasses the reference alloy AlCuNiCoSbZr (RR30) in its mechanical properties up to 250 °C. It was shown that by applying design of experiments, time and effort for an alloy development can effectively be reduced and simultaneously a high degree of information density about the alloying system considered is generated.展开更多
基金co-financed by the European Union within the European Social Fund in the project"Mloda Kadra 2015+"
文摘The paper presents the research results of using an innovative method to reclaim the waste moulding sands containing water glass. Two of the examined processes are connected with "dry" or "wet" activation of inorganic binder in waste moulding sand mixtures physically hardened by microwave radiation. The sand mixtures consisting of high-silica sand and water-glass with average molar module 2.5, were subjected to the following cyclical process: mixing the components, compacting, microwave heating, cooling-down, thermally loading the mould to 800 °C, cooling-down to ambient temperature, and knocking-out. After being knocked-out, the waste moulding sands were subjected to either dry or wet activation of the binder. To activate thermally treated inorganic binder, each of the examined processes employed the surface phenomenon usually associated to mechanical reclamation. The study also covered possible use of some elements of wet reclamation to rehydrate waste binder. To evaluate the effectiveness of the two proposed methods of waste binder activation, selected strength and technological parameters were measured. After each subsequent processing cycle, the permeability, tensile strength and bending strength were determined. In addition, the surface of activated sand grains was examined with a scanning electron microscope. Analysis of the results indicates that it is possible to re-activate the used binder such as sodium silicate, and to stabilize the strength parameters in both activation processes. Permeability of the refreshed moulding sands strongly depends on the surface condition of high-silica grains. The wet activation process by wetting and buffering knocked-out moulding sands in closed humid environment makes it possible to reduce the content of refreshing additive in water-glass. The moulding sands cyclically prepared in both processes do not require the addition of fresh high-silica sand. The relatively high quality achieved in the refreshed moulding sands allows them to be reused for manufacture of next moulds. Thus, the two proposed methods for cyclically processing used moulding sands containing sodium silicate, subject to microwave hardening, are suitable for economic and ecological circulation moulding mixtures.
基金supported financially by the European Community under Marie Curie Transfer of Knowledge grant No. MTKD-CT-2006-042468 (AGH No.27.27.170.304)Polish Ministry of Science and Higher Education for financial support under grant No. N507-44-66-34 (AGH No.18.18.170.325)
文摘The grain density,Nv,in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling,ΔT,of a liquid alloy.This type of function depends on the characteristics of heterogeneous nucleation sites and number of SiC present in the alloy.The aim of this paper was selection of parameters for the model describing the relationship between the grain density of primary phase and undercooling.This model in connection with model of crystallisation,which is based on chemical elements diffusion and grain interface kinetics,can be used to predict casting quality and its microstructure.Nucleation models have parameters,which exact values are usually not known and sometimes even their physical meaning is under discussion.Those parameters can be obtained after mathematical analysis of the experimental data.The composites with 0,1,2,3 and 4wt.% of SiC particles were prepared.The AZ91 alloy was a matrix of the composite reinforcement SiC particles.This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple,to analyze the undercooling for different composites and thickness plates and its influence on the grain size.The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles,and undercooling with grain size.These values were used to approximate nucleation model adjustment parameters.Obtained model can be very useful in modelling composites microstructure.
基金financially supported by the resources of the National Science Centre of Poland awarded on the basis of the decision No.DEC-2011/01/N/ST8/07054
文摘Zn-Al alloys constitute an interesting group of foundry alloys. Due to a relatively low melting temperature, they allow a decrease in energy-consumption of the melting process and alloy preparation. The vibration damping ability is one of the most interesting properties of the Zn-Al alloys. Zn-Al alloys are divided into two groups: the low-aluminium and high-aluminium alloys. The investigated Zn-10 wt.% Al(ZnAl10) alloy is representative of the high-aluminium alloys, which, on account of its tendency of forming coarse-grained structures, has rather low plastic properties, including elongation. In order to improve the plastic properties, a modification treatment is usually applied. The dependence of the damping coefficient of the ultrasound wave on the amount of the introduced inoculant was studied. Investigations were performed using the AlT i3C0.15 inoculant as the modifier of the ZnAl10 alloy. It was found that titanium additions, in a range from 25 to 100 ppm in relation to the melted charge mass, can reduce the damping coefficient value. An increase of the inoculant addition causes a rise of the damping coefficient, which is probably related to the scattering of the ultrasound wave on Al_3Ti and TiC particles introduced with the inoculant.
基金This work is financially supported by Program of Russian Foundation For Basic Research(No 05-08-01357)
文摘The results of research on influence of an irradiation of a liquid phase by nanosecond electromagnetic impulses(NEMI) on processes of crystallization and structurization,physicomechanical and operational properties of copper,aluminium and alloys on their basis(bronze and silumin) were presented.
文摘This work was carried out with the aim of using alloying and ageing processes to develop new alloys from grey cast iron that will have optimum properties suitable for the manufacturing of machine cutting tools. Four different alloys of grey cast iron with alloying composition of Fe-3% Al-2.5% Cr-2% Mo;Fe-3% Al-2% Cr-2% Mo;Fe-3% Al-2.5% Cr-1.5% Mo and Fe-3% Al-1.5% Cr-2% Mo were produced. The chemical analysis of both as-received base metal and produced alloys was determined using Spetro-CJRO Arc-Spectrometer. The microstructural properties and mechanical properties (hardness, impact toughness and ultimate tensile strength) of the produced alloys were determined for both as-cast samples and aged samples. The results showed that the addition of these alloying elements slightly decreased carbon, silicon and phosphorus content and thereby changed the hypereutectic cast iron to hypoeutectic by reducing the carbon equivalent. Also the morphology of graphite flake was changed as a result of the formation of nitrides and carbides of different phases. The results of the mechanical properties showed that the maximum hardness values obtained for each of the four alloys produced and aged at 300?C are 71.5 HRc, 69 HRc, 66.5 HRc and 65.4 HRc respectively. The maximum values for impact toughness obtained for each of the same produced alloys are 66 J, 63.6 J, 62 J and 60.3 J respectively. Also the maximum ultimate tensile strength values obtained for each of the alloys are 1380 N·mm-2, 1311 N·mm-2, 1260 N·mm-2 and 1190 N·mm-2. Comparing the properties obtained from the produced alloys with those of the commercial cutting tools, it was found that cutting tools manufactured from these produced alloys can compete favourably with cast cobalt tool, high speed steel (HSS) and tool steel.
基金The authors would like to thank the Federal Ministry for Economic Affairs and Energy(BMWi)the German Federation of Industrial Research Associations(AiF+3 种基金funding No.18647N)the Industrial Research Association for Foundry Technology(FVG)for funding this projectFurthermorewe would like to thank our industrial partners for their support within this project and for providing materials,castings,test facilities and sharing their experience。
文摘Design of experiments (DoE) based on a linear regression model was used to develop an Aluminum Copper-based casting alloy. The main objectives of the development were the achievement of (1) a high strength at elevated temperatures with (2) a low hot tearing tendency. Within the DoE, 17 different chemical compositions of the newly developed alloy AlCuMnCo(Ni) were cast, tested regarding hot tearing tendency and characterized in tensile tests up to 300 °C. Test results showed that the AlCuMnCo(Ni)-alloys from the DoE have high mechanical properties from ambient temperature up to 300 °C and thus feature a high thermal stability. It was found that the alloying elements Cu and Co increase the yield strength whereas Mn and Ni tend to increase the attainable elongation. Furthermore, some of the alloys showed no or a very low tendency to hot tearing a remarkable feature for Al-Cu alloys which are otherwise highly susceptible to hot tearing. The regression model that was developed from the test results fulfils a set of quality criteria and is therefore expected to provide reliable predictions. The predictive ability of the model was validated by casting and testing a sweet spot alloy. Results show that the model is sufficient for predicting the mechanical properties from ambient temperature to 250 °C. Furthermore, the sweet spot alloy surpasses the reference alloy AlCuNiCoSbZr (RR30) in its mechanical properties up to 250 °C. It was shown that by applying design of experiments, time and effort for an alloy development can effectively be reduced and simultaneously a high degree of information density about the alloying system considered is generated.