Poly-and perfluoroalkyl substances(PFAS),including perfluorooctanoic acid(PFOA)and perfluorooctane sul-fonate(PFOS),are persistent environmental pollutants with potential toxicological effects on human health.The aim ...Poly-and perfluoroalkyl substances(PFAS),including perfluorooctanoic acid(PFOA)and perfluorooctane sul-fonate(PFOS),are persistent environmental pollutants with potential toxicological effects on human health.The aim of this study was to investigate the impact of PFOS and PFOA on the effectiveness of selected drugs used in the treatment of prostate cancer based on in vitro tests on cell lines.Three cell lines were used in the study:two human prostate cancer cells(DU-145 and PC3)and one human normal prostate cell line(PNT1A).Using dose-response experiments,it was observed that PFAS had differential effects on cancer and normal cells.At low concentrations,PFOA and PFOS stimulated the proliferation of cancer cells,particularly PC3,while higher concentrations led to reduced viability.In normal cells,PFOS exhibited greater cytotoxicity compared to PFOA.Furthermore,PFOS enhanced docetaxel cytotoxicity in PC3 cells but reduced its efficacy in DU-145 cells.Similarly,PFOA diminished cabazitaxel effectiveness in DU-145 cells,suggesting PFAS-drug interactions may depend on the cell type,drug,and PFAS concentration.Results suggest that PFAS may influence cellular processes through receptor-mediated pathways,oxidative stress modulation,and protein binding,altering drug bioavailability and cellular uptake.The study also highlights the non-monotonic dose-response relationships observed in PFAS-treated cells.These findings raise concerns about the potential risks associated with PFAS exposure,particularly in the context of cancer treatment.Future studies should focus on long-term,low-dose PFAS exposure,the use of primary cells,and the molecular mechanisms driving these interactions to better inform therapeutic strategies.展开更多
In the present work we compared the biological activity of DCF,4’-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products(2-hydroxyphenylacetic acid;2,5-dihydroxyphe...In the present work we compared the biological activity of DCF,4’-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products(2-hydroxyphenylacetic acid;2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline)which are produced during AOPs,such as ozonation and UV/H2 O2.We also examined the interaction of DCF with chlorogenic acid(CGA).CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge.In the present experiment the evaluation of following parameters was performed:E.coli K-12 cells viability,growth inhibition of E.coli K-12 culture,LC50 and mortality of Chironomus aprilinus,ge no toxicity,sodA promoter induction and ROS generation.In addition the reactivity of E.coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured.The results showed the influence of DCF,4’-OHDCF and 5-OHDCF on E.coli K-12 cells viability and bacteria growth,comparable to AOPs by-products.The highest toxicity was observed for selected,tested AOPs by-products,in comparison to the DCF,4’-OHDCF and 5-OHDCF.Genotoxicity assay indicated that 2,6-dichloroaniline(AOPs by-product)had the highest toxic effect.The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF,4’-OHDCF and 5-OHDCF,compared to other tested compounds.We have also found that there is an interaction between chlorogenic acid and DCF,which resulted in increased toxicity of the mixture of the both compounds to E.coli K-12,comparable to parent chemicals.The strongest response of E.coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters,comparable to control sample was noticed.It indicates,that E.coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment.Due to toxicity and biological activity of tested DCF transformation products,there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.展开更多
Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capa...Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capacity of Ce/BEA reaches 36μmol/g in the feed gas close to realistic exhaust conditions,and the NO_(x) desorption temperature,which is around 290℃,is ideal for diesel exhaust after-treatment systems.Ce/BEA also behaves notable stability of high temperature CO exposure conditions.Multiple characterizations were performed to explore the NO_(x) adsorption chemistry of Ce/BEA.The Ce(Ⅳ)species in the BEA zeolite serves as the active center for NO_(x) adsorption.The bidentate nitrate species is responsible for the observed NO_(x) storage capacity,and the active oxygen around Ce(Ⅳ)plays a critical role in its formation.Considering the significantly better cost efficiency of Ce compared to Pd,Ce/BEA presents an enormous potential for the PNA applications and provides a novel formulation for the noblemetal choice of PNA materials.展开更多
Climate change vulnerability assessment is an essential tool for identifying regions that are most susceptible to the impacts of climate change and designing effective adaptation actions that can reduce vulnerability ...Climate change vulnerability assessment is an essential tool for identifying regions that are most susceptible to the impacts of climate change and designing effective adaptation actions that can reduce vulnerability and enhance long-term resilience of these regions.This study explored a framework for climate change vulnerability assessment in the new urban planning process in Jangwani Ward,Tanzania.Specifically,taking flood as an example,this study highlighted the steps and methods for climate change vulnerability assessment in the new urban planning process.In the study area,95 households were selected and interviewed through purposeful sampling.Additionally,10 respondents(4 females and 6 males)were interviewed for Focus Group Discussion(FGD),and 3 respondents(1 female and 2 males)were selected for Key Informant Interviews(KII)at the Ministry of Lands,Housing and Human Settlements Development.This study indicated that climate change vulnerability assessment framework involves the assessment of climatic hazards,risk elements,and adaptive capacity,and the determination of vulnerability levels.The average hazard risk rating of flood was 2.3.Socioeconomic and livelihood activities and physical infrastructures both had the average risk element rating of 3.0,and ecosystems had the average risk element rating of 2.9.Adaptive capacity ratings of knowledge,technology,economy or finance,and institution were 1.6,1.9,1.4,and 2.2,respectively.The vulnerability levels of socioeconomic and livelihood activities and physical infrastructure were very high(4.0).Ecosystems had a high vulnerability level(3.8)to flood.The very high vulnerability level of socioeconomic and livelihood activities was driven by high exposure and sensitivity to risk elements and low adaptive capacity.The study recommends adoption of the new urban planning process including preparation,planning,implementation,and monitoring-evaluation-review phases that integrates climate change vulnerability assessment in all phases.展开更多
Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simula...Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.展开更多
文摘Poly-and perfluoroalkyl substances(PFAS),including perfluorooctanoic acid(PFOA)and perfluorooctane sul-fonate(PFOS),are persistent environmental pollutants with potential toxicological effects on human health.The aim of this study was to investigate the impact of PFOS and PFOA on the effectiveness of selected drugs used in the treatment of prostate cancer based on in vitro tests on cell lines.Three cell lines were used in the study:two human prostate cancer cells(DU-145 and PC3)and one human normal prostate cell line(PNT1A).Using dose-response experiments,it was observed that PFAS had differential effects on cancer and normal cells.At low concentrations,PFOA and PFOS stimulated the proliferation of cancer cells,particularly PC3,while higher concentrations led to reduced viability.In normal cells,PFOS exhibited greater cytotoxicity compared to PFOA.Furthermore,PFOS enhanced docetaxel cytotoxicity in PC3 cells but reduced its efficacy in DU-145 cells.Similarly,PFOA diminished cabazitaxel effectiveness in DU-145 cells,suggesting PFAS-drug interactions may depend on the cell type,drug,and PFAS concentration.Results suggest that PFAS may influence cellular processes through receptor-mediated pathways,oxidative stress modulation,and protein binding,altering drug bioavailability and cellular uptake.The study also highlights the non-monotonic dose-response relationships observed in PFAS-treated cells.These findings raise concerns about the potential risks associated with PFAS exposure,particularly in the context of cancer treatment.Future studies should focus on long-term,low-dose PFAS exposure,the use of primary cells,and the molecular mechanisms driving these interactions to better inform therapeutic strategies.
基金financially supported by National Science Centre,Poland,under the research project number 2018/29/B/NZ9/01997
文摘In the present work we compared the biological activity of DCF,4’-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products(2-hydroxyphenylacetic acid;2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline)which are produced during AOPs,such as ozonation and UV/H2 O2.We also examined the interaction of DCF with chlorogenic acid(CGA).CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge.In the present experiment the evaluation of following parameters was performed:E.coli K-12 cells viability,growth inhibition of E.coli K-12 culture,LC50 and mortality of Chironomus aprilinus,ge no toxicity,sodA promoter induction and ROS generation.In addition the reactivity of E.coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured.The results showed the influence of DCF,4’-OHDCF and 5-OHDCF on E.coli K-12 cells viability and bacteria growth,comparable to AOPs by-products.The highest toxicity was observed for selected,tested AOPs by-products,in comparison to the DCF,4’-OHDCF and 5-OHDCF.Genotoxicity assay indicated that 2,6-dichloroaniline(AOPs by-product)had the highest toxic effect.The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF,4’-OHDCF and 5-OHDCF,compared to other tested compounds.We have also found that there is an interaction between chlorogenic acid and DCF,which resulted in increased toxicity of the mixture of the both compounds to E.coli K-12,comparable to parent chemicals.The strongest response of E.coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters,comparable to control sample was noticed.It indicates,that E.coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment.Due to toxicity and biological activity of tested DCF transformation products,there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.
基金supported by the National Key R&D Program of China(2021YFB3503200)the Major Science and Technology Programs of Yunnan Province(202002AB080001-1)。
文摘Passive NO_(x) adsorbers(PNAs)were proposed to address the NO_(x) emissions during the cold start phase.Here we show a novel Ce-based BEA zeolite,as a noble-metal-free passive NO_(x)adsorber.The NO_(x) adsorption capacity of Ce/BEA reaches 36μmol/g in the feed gas close to realistic exhaust conditions,and the NO_(x) desorption temperature,which is around 290℃,is ideal for diesel exhaust after-treatment systems.Ce/BEA also behaves notable stability of high temperature CO exposure conditions.Multiple characterizations were performed to explore the NO_(x) adsorption chemistry of Ce/BEA.The Ce(Ⅳ)species in the BEA zeolite serves as the active center for NO_(x) adsorption.The bidentate nitrate species is responsible for the observed NO_(x) storage capacity,and the active oxygen around Ce(Ⅳ)plays a critical role in its formation.Considering the significantly better cost efficiency of Ce compared to Pd,Ce/BEA presents an enormous potential for the PNA applications and provides a novel formulation for the noblemetal choice of PNA materials.
文摘Climate change vulnerability assessment is an essential tool for identifying regions that are most susceptible to the impacts of climate change and designing effective adaptation actions that can reduce vulnerability and enhance long-term resilience of these regions.This study explored a framework for climate change vulnerability assessment in the new urban planning process in Jangwani Ward,Tanzania.Specifically,taking flood as an example,this study highlighted the steps and methods for climate change vulnerability assessment in the new urban planning process.In the study area,95 households were selected and interviewed through purposeful sampling.Additionally,10 respondents(4 females and 6 males)were interviewed for Focus Group Discussion(FGD),and 3 respondents(1 female and 2 males)were selected for Key Informant Interviews(KII)at the Ministry of Lands,Housing and Human Settlements Development.This study indicated that climate change vulnerability assessment framework involves the assessment of climatic hazards,risk elements,and adaptive capacity,and the determination of vulnerability levels.The average hazard risk rating of flood was 2.3.Socioeconomic and livelihood activities and physical infrastructures both had the average risk element rating of 3.0,and ecosystems had the average risk element rating of 2.9.Adaptive capacity ratings of knowledge,technology,economy or finance,and institution were 1.6,1.9,1.4,and 2.2,respectively.The vulnerability levels of socioeconomic and livelihood activities and physical infrastructure were very high(4.0).Ecosystems had a high vulnerability level(3.8)to flood.The very high vulnerability level of socioeconomic and livelihood activities was driven by high exposure and sensitivity to risk elements and low adaptive capacity.The study recommends adoption of the new urban planning process including preparation,planning,implementation,and monitoring-evaluation-review phases that integrates climate change vulnerability assessment in all phases.
文摘Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.