Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without ad...Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without adequate treatment,posing serious risk of heavy metals(HMs)contamination to surrounding ecosystems.Given these challenges,restoration of MTs to mitigate their negative impacts has become highly important.This study attempts to compile different types of MTs,their characteristics,and associated issues such as acid mine drainage(AMD)and HMs contamination,along with other environmental impacts.It also explores the fundamentals of phytoremediation,highlighting key processes,recent advancements,benefits,limitations,and strategies for post-harvest management.The findings indicate that MTs are a major source of HM pollution and contribute significantly to environmental deterioration.Phytoremediation has emerged as a promising,cost-effective,and eco-friendly solution for MT restoration.In addition to mitigating contamination,phytoremediation enhances soil quality,prevents erosion,reduces HM leaching into groundwater,and improves the visual appeal of degraded sites.Research suggests that revegetating MT-contaminated soils with specific plant species can effectively remediate these areas,reducing HM leaching risks while improving soil properties.This review serves as a valuable resource for researchers working on MT restoration,offering insights into the latest advancements in phytoremediation technology and its potential to address the environmental challenges posed by MTs.展开更多
Evaluating the pressure of atmospheric pollutant emissions on the atmospheric environment is crucial for effective pollution control and emission reduction policies.This study introduces a novel Atmospheric Environmen...Evaluating the pressure of atmospheric pollutant emissions on the atmospheric environment is crucial for effective pollution control and emission reduction policies.This study introduces a novel Atmospheric Environmental Pressure Index(AEPI)and employs a dynamic comprehensive method to evaluate China’s Atmospheric Environmental Pressure(AEP)across 31 provinces from 2008 to 2017.The drivers of AEP were analyzed using a spatial panel data model,uncovering the integral role of pollution reduction policies,particularly the Air Pollution Prevention and Control Action Plan,which led to a 25%reduction in AEP during its enforcement.Our findings reveal significant spatial disparities in AEP,with higher levels in the Beijing-Tianjin-Hebei and Yangtze River Delta regions.The regression analysis identifies economic development,industrial structure,energy efficiency,environmental regulations,and urbanization as key influencing factors,though their impacts vary across different regions,suggesting the need for region-specific pollution control policies.Furthermore,the shift in the AEP gravity center from2008 to 2017 indicated a southeastward movement,suggesting the necessity to focus air pollution control efforts on the southeast provinces.In conclusion,the AEPI developed in this study enables comparative analysis of AEP across different regions and facilitates the monitoring of long-term trends,which is valuable in guiding regional air pollution control in China.展开更多
This study aimed to identify the worst“bad actors”in mixtures of pollutants contributing to liver damage and shorter telomeres in the U.S.population,using weighted quantile sum(WQS)modeling with stratification by ra...This study aimed to identify the worst“bad actors”in mixtures of pollutants contributing to liver damage and shorter telomeres in the U.S.population,using weighted quantile sum(WQS)modeling with stratification by race/ethnicity.We conducted a comprehensive cross-sectional analysis of mixtures of pollutants in National Health and Nutrition Examination Survey datasets:(1)33,979 adults with blood levels of cadmium(Cd),lead(Pb),and mercury,including subsets with measurements of per-/polyfluoroalkyl substances(PFAS),and polychlorinated biphenyls(PCBs)/polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs);and(2)7360 adults with measurements of telomeres,Cd,and Pb.Multivariable-adjusted WQS regression examined associations between WQS mixture indices and liver injury(alanine aminotransferase(ALT)-elevation),advanced liverfibrosis(LF),and telomere length.WQSmetal indices were associated with advanced-LF in all racial/ethnic groups.The top contributor was Cd in the total population and in non-Hispanic Whites(NHW),while Pb was the top contributor in non-Hispanic Blacks(NHB).The WQSmetal-PCB-PCDD/F index was associated with ALT-elevation,with PCB126,Cd and Pb as main contributors;the odds ratio(OR)per decile was 1.50(95%CI,1.26–1.78),while the OR per decile of the WQSmetal-PFAS index was 1.03(95%CI,0.98–1.05),not significant.WQS_(metal indices)were associated with shorter telomeres.Cd was main contributor associated with advanced-LF in NHW,while Pb was the major bad actor in NHB,suggesting that NHB may be especially susceptible to Pb toxicity.Metals were associated with shorter telomeres.Metal and PCB/PCDD/F mixtures were associated with ALT-elevation.Heavy metals and organic chemicals may contribute to liver-related morbidity and healthcare disparities.展开更多
The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection ...The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection are attracting increasing attention.In this paper,the data from 138 papers about different optical hydrogels(OHs)are extracted for statistical analysis.The detection performance and potential of various types of OHs in different environmental pollutant detection scenarios were evaluated and compared to those obtained using the standard detection method.Based on this analysis,the target recognition and sensing mechanisms of two main types of OHs are reviewed and discussed:photonic crystal hydrogels(PCHs)and fluorescent hydrogels(FHs).For PCHs,the environmental stimulus response,target receptors,inverse opal structures,and molecular imprinting techniques related to PCHs are reviewed and summarized.Furthermore,the different types of fluorophores(i.e.,compound probes,biomacromolecules,quantum dots,and luminescent microbes)of FHs are discussed.Finally,the potential academic research directions to address the challenges of applying and developing OHs in environmental sensing are proposed,including the fusion of various OHs,introduction of the latest technologies in various fields to the construction of OHs,and development of multifunctional sensor arrays.展开更多
Chemical modifications of proteins induced by ambient ozone(O_(3))and nitrogen oxides(NOx)are of public health concerns due to their potential to trigger respiratory diseases.The laboratory and environmental exposure ...Chemical modifications of proteins induced by ambient ozone(O_(3))and nitrogen oxides(NOx)are of public health concerns due to their potential to trigger respiratory diseases.The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere.Using bovine serum albumin(BSA)as a model protein,we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study.In the laboratory simulation system,the generated gaseous pollutants showed negligible losses.Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%.For environmental exposure experiment,quartz fiber filter was selected as the upper filter with low gaseous O_(3)(8.0%)and NO_(2)(1.7%)losses,and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%.The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions,while environmental factors(e.g.,molecular oxygen and ultraviolet)may cause greater protein monomer losses.Based on the evaluation,the study exemplarily applied the two systems to protein modification and both showed that O_(3) promotes the protein oligomerization and nitration,while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples.The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions.A combination of the two will further reveal the actual mechanism of protein modifications.展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal va...Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.展开更多
The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost ...The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost toxic cyanotoxin,microcystin-LR(MC-LR)enter soil via runoff,irrigated surface water and sewage,and the application of cyanobacterial biofertilizers as part of the sustainable agricultural practice.Earthworms in such remediation systems must sustain the potential risk from both nZVI and MC-LR.In the present study,earthworms(Eisenia fetida)were exposed up to 14 days to MC-LR and nZVI(individually and inmixture),and the toxicity was investigated at both the organismal andmetabolic levels,including growth,tissue damage,oxidative stress,metabolic response and gut microbiota.Results showed that co-exposure of MC-LR and nZVI is less potent to earthworms than that of separate exposure.Histological observations in the co-exposure group revealed only minor epidermal brokenness,and KEGG enrichment analysis showed that co-exposure induced earthworms to regulate glutathione biosynthesis for detoxification and reduced adverse effects from MC-LR.The combined use of nZVI promoted the growth and reproduction of soil and earthworm gut bacteria(e.g.,Sphingobacterium and Acinetobacter)responsible for the degradation of MC-LR,whichmight explain the observed antagonism between nZVI and MC-LR in earthworm microcosm.Our study suggests the beneficial use of nZVI to detoxify pollutants in earthworm-based vermiremediation systems where freshwater containing cyanobacterial blooms is frequently used to irrigate soil and supply water for the growth and metabolism of earthworms.展开更多
The paper formulates new principles that should form the basis for the development and creation of new environmental monitoring based on heavy UAVs and high-altitude so-called pseudo-satellites capable of operating fo...The paper formulates new principles that should form the basis for the development and creation of new environmental monitoring based on heavy UAVs and high-altitude so-called pseudo-satellites capable of operating for a long time at altitudes of 25 - 30 km. In order to develop such principles, this paper analyzes the radioecological situation in the territories of Donetsk and Luhansk regions of Ukraine for rapid and high-quality environmental cleanup and rehabilitation of areas with detected critical levels of environmentally hazardous pollutants. In order to quickly obtain fundamentally new environmental information, it is necessary to conduct multi-parameter, high-precision integrated monitoring of the Earth’s geospheres based on the latest methods and equipment for ground and remote environmental measurements, and new methods and technological means of clean, environmentally safe processing and final disposal. As the most appropriate technology, we propose mobile installations for plasma-chemical pyrolysis of medical waste directly at the place of its generation.展开更多
This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of t...This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes(TR+CG-H3G).The Cockle Shell(CS)was used as a natural bio-adsorbent.The characterizations of CS were investigated by Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDX)and Brunauer–Emmett–Teller(BET).The adsorption potential of Cockle Shells was tested in two cases(single and binary system)and determined by:contact time(0–60 min),bio-adsorption dose(3–15 g/L),initial concentration(10–300 mg/L),temperature(22–61°C)and pH solution(2–12).The study of bio-adsorption(equilibrium and kinetics)was conducted at 22°C.The kinetic studies demon-strated that a pseudo-second-order adsorption mechanism had a good correlation coefficient(R2≥0.999).The Langmuir isotherm modeling provided a well-defined description of TR and CG-H3G bio-adsorption on cockle shells,exhibiting maximum capacities of 29.41 and 3.69 mg/g respectively at 22°C.The thermodynamic study shows that the reaction between the TR,CG-H3G dyes molecules and the bio-adsorbent is exothermic,spontaneous in the range of 22–31°C with the aleatory character decrease at the solid-liquid interface.The study of selectivity in single and binary systems has been performed under optimal operating conditions using the industrial textile rejection pH(pH=6.04).CG-H3G dye is found to have a higher selectivity than TR in single(0–60 min)and binary systems with a range of 6–45 min,as shown by the selectivity measurement.It was discovered that CS has the capability to remove both CG-H3G and TR dyes in both simple and binary systems,making it a superior bio-adsorbent.展开更多
The present study assessed the efficacy and safety of thoracic radiotherapy(TRT)following first-line chemotherapy or chemoimmunotherapy in patients with extensive-stage small cell lung cancer(ES-SCLC),focusing on the ...The present study assessed the efficacy and safety of thoracic radiotherapy(TRT)following first-line chemotherapy or chemoimmunotherapy in patients with extensive-stage small cell lung cancer(ES-SCLC),focusing on the influence of different TRT timing strategies(consolidative vs.salvage)on survival rates.We retrospectively analyzed a total of 54 patients with ES-SCLC treated between January 2019 and July 2022.Patients receiving consolidative TRT(cTRT)within three months after completion of first-line treatment were compared with those receiving salvage TRT(sTRT)after disease progression.The primary endpoints were overall survival(OS),progression-free survival(PFS),locoregional-free survival(LRFS),and distant metastasis-free survival(DMFS);the secondary endpoint included safety.The cTRT group(n=41)showed significantly longer median OS(26.6 vs.14.8 months,P=0.048),PFS(12.9 vs.3.5 months,P<0.0001),and DMFS(10.7 vs.3.4 months,P=0.0044)than the sTRT group(n=13).Multivariate analysis revealed that cTRT was an independent,favorable prognostic factor.No significant differences in OS or LRFS were observed between high-dose(≥50 Gy)and low-dose(<50 Gy)TRT.Hematologic and respiratory toxicities were the most frequently reported adverse events,with acceptable tolerability.In conclusion,cTRT after chemoimmunotherapy significantly improves survival outcomes for ES-SCLC patients,and low-dose TRT may be a suitable option.展开更多
Reports and claims have been made reflecting opinions of the environmental impacts of the Whein Town Landfill Facility on the residents of the Whein Town Community. This study seeks to examine the environmental effect...Reports and claims have been made reflecting opinions of the environmental impacts of the Whein Town Landfill Facility on the residents of the Whein Town Community. This study seeks to examine the environmental effects of the Whein Town Landfill on nearby residents, and the effectiveness of the existing mitigation schemes. This cross-sectional study used 4-point-Likert and 2-point-dichotomous scales questionnaires to collect information from 352 Whein Town community household heads. The findings reveal that “odorous emissions” represent the most critical environmental challenge, severely impacting residents’ well-being and quality of life. By contrast, “garbage spillage along routes” has a minimal impact on residents’ lives, with many residents rating it as “Not Serious”. Six out of eight mitigation implemented schemes achieved a success rate below 25%, one performed at approximately 50%, and only one scheme—the landfill fencing—was effectively implemented, reaching a near-perfect success rate of 99.99%. Therefore, residents of Whein Town are experiencing adverse environmental effects that can be remediated with proper planning and the implementation of existing schemes.展开更多
The ocean serves as a repository for various types of artificial nanoparticles.Nanoplastics(NPs)and nano zinc oxide(nZnO),which are frequently employed in personal care products and food packaging materials,are likely...The ocean serves as a repository for various types of artificial nanoparticles.Nanoplastics(NPs)and nano zinc oxide(nZnO),which are frequently employed in personal care products and food packaging materials,are likely simultaneously released and eventually into the ocean with surface runoff.Therefore,their mutual influence and shared destiny in marine environment cannot be ignored.This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions.Results showed that NPs remained dispersed in brine,while nZnO formed homoaggregates.In seawater of 35 practical salinity units(PSU),nZnO formed heteroaggregates with NPs,inhibiting NPs mobility and decreasing the recovered mass percentage(Meff)from 24.52%to 12.65%.In 3.5 PSU brackish water,nZnO did not significantly aggregate with NPs,and thus barely affected their mobility.However,NPs greatly enhanced nZnO transport with Meff increasing from 14.20%to 25.08%,attributed to the carrier effect of higher mobility NPs.Cotransport from brackishwater to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU,below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport.This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.展开更多
The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire ...The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces.展开更多
Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a react...Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a reactant and is fed as a liquid phase,such as trickle bed-type reactors in a hydrogen-water isotope exchange(HIE)reaction.The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor.Herein,a platinum-incorporated metal-organic framework(MIL-101)based bifunctional hydrophobic catalyst functionalized with long alkyl chains(C_(12),dodecylamine)and further manufactured with poly(vinylidene fluoride),Pt@MIL-101-12/PVDF,has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water.Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties,with a notable reduction of over 65%in water adsorption capacity and newly introduced liquid water repellency.while exhibiting a negligible increase in mass transfer resistance,i.e.,bifunctional hydrophobicity.Excellent catalytic activity,evaluated via HIE reaction,and its durability underscore the impact of bifunctional hydrophobicity.In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite,highlighting reinforced water diffusion at the microscopic level,affirming the catalyst's bifunctionality in different length scales.With demonstrated radiation resistance,Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions.展开更多
The sedimentary geochemistry of St.Martin’s Island is important to determine the origin of the source rock,paleo weathering,tectonic setting,sediment recycling,maturity,sorting,redox condition,and paleo salinity of t...The sedimentary geochemistry of St.Martin’s Island is important to determine the origin of the source rock,paleo weathering,tectonic setting,sediment recycling,maturity,sorting,redox condition,and paleo salinity of the sediments.Major oxides,trace elements,and rare earth elements(REEs)obtained from the INAA technique are presented by analyzing the sediment samples collected from the shoreline of St.Martin’s Island,Bangladesh.The elemental ratios,comparison with average upper continental crust(UCC),binary diagrams(Th/Sc vs.Sc,La/Th vs.Hf,Th/Co vs.La/Sc),and chondrite normalized REE patterns exhibit substantial LREE enrichment,relatively fl at HREE fractionation,considerable negative Eu anomalies(average:0.72),indicates the derivation from a source dominated by felsic rock,with contribution from intermediate source and mafi c component.Sediments from St.Martin’s Island exhibit the deposition of sediments in transitional environments of active and passive continental margin settings.Weathering indices value of CIA,PIA,CIW,CIX,and K 2 O/Rb ratio show moderate chemical weathering,indicating that the sediments are chemically mature.Sedimentary redox indicative proxies,such as U/Th,V/Cr,and V/Sc,show an oxic depositional environment during sediment deposition.The intermediate CIA and other weathering index values of the St.Martin’s sediments show that the area had semiarid and humid climatic conditions throughout the deposition.The Rb/K ratio of the St.Martin’s sediments suggests that the development and deposition of the sedimentary sequence of St.Martin’s Island mainly occurred in a brackish water environment during the geological past.展开更多
This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to 2020.Utilizing data fr...This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to 2020.Utilizing data from the Infrared Atmospheric Sounding Interfer-ometer(IASI),Generalized Additive Models(GAM),and the GEOS-Chem chemical transport model,we observed a significant increase of NH_(3)VCDs in the YRD between 2014 and 2020.The spatial distribution analysis revealed higher NH_(3)concentrations in the northern part of the YRD region,primarily due to lower precipitation,alkaline soil,and intensive agricul-tural activities.NH_(3)VCDs in the YRD region increased significantly(65.18%)from 2008 to 2020.The highest growth rate occurs in the summer,with an annual average growth rate of 7.2%during the period from 2014 to 2020.Agricultural emissions dominated NH_(3)VCDs during spring and summer,with high concentrations primarily located in the agricultural areas adjacent to densely populated urban zones.Regions within several large urban areas have been discovered to exhibit relatively stable variations in NH_(3)VCDs.The rise in NH_(3)VCDs within the YRD region was primarily driven by the reduction of acidic gases like SO_(2),as emphasized by GAM modeling and sensitivity tests using the GEOS-Chem model.The concentration changes of acidic gases contribute to over 80%of the interannual variations in NH_(3)VCDs.This emphasizes the crucial role of environmental policies targeting the reduction of these acidic gases.Effective emission control is urgent tomitigate environmental hazards and secondary particulate matter,especially in the northern YRD.展开更多
As global greenhouse gases continue rising,the urgency of more ambitious action is clearer than ever before.China is the world’s biggest emitter of greenhouse gases and one of the countries affected most by climate c...As global greenhouse gases continue rising,the urgency of more ambitious action is clearer than ever before.China is the world’s biggest emitter of greenhouse gases and one of the countries affected most by climate change.The evidence about the impacts of climate change on the environment and human health may encourage China to take more decisive action to mitigate greenhouse gas emissions and adapt to climate impacts.展开更多
This study was carried out to evaluate the response of Nile tilapia(Oreochromis niloticus)fingerlings to acute copper sulphate and ferrocene toxicity.Nile tilapia fingerlings weighing 2.3±0.2 g were acclimated an...This study was carried out to evaluate the response of Nile tilapia(Oreochromis niloticus)fingerlings to acute copper sulphate and ferrocene toxicity.Nile tilapia fingerlings weighing 2.3±0.2 g were acclimated and randomly distributed at a rate of 10 fish per 30 L aquarium.Fish were exposed to a range of copper sulphate and ferrocene concentrations of 4 mg/L,8 mg/L,12 mg/L,16 mg/L and 2.5 mg/L,5 mg/L,7.5 mg/L,10 mg/L respectively.Fish not exposed to any toxicant served as control.Mortality was assessed and median lethal concentration(LC50)and median lethal time(LT50)were calculated.The 96-h LC50 values obtained for copper sulphate and ferrocene were 7.49 mg/L(confidence interval CI:6.35 to 8.57 mg/L)and 3.55 mg/L(CI:0.98 to 5.17 mg/L)respectively.The LC50 decreased with time of exposure implying that toxicity increased over time,however,LT50 decreased as concentration increased.The safe concentration for copper sulphate derived was 1.913 mg/L and 1.196 mg/L for ferrocene.Histological analyses were carried out on fish gills and skin.The skin histomorphology showed marked and widespread epidermal loss and widespread mycocytic degeneration in treatments with high concentration for both toxicants.The gill morphology showed moderate to severe hyperplasia of the primary gill epithelia leading to partial or complete loss of the secondary lamellae.展开更多
文摘Mining activities are often associated with significant environmental degradation,particularly due to the accumulation of mine tailings(MTs).These waste materials are frequently stored in dams or open ponds without adequate treatment,posing serious risk of heavy metals(HMs)contamination to surrounding ecosystems.Given these challenges,restoration of MTs to mitigate their negative impacts has become highly important.This study attempts to compile different types of MTs,their characteristics,and associated issues such as acid mine drainage(AMD)and HMs contamination,along with other environmental impacts.It also explores the fundamentals of phytoremediation,highlighting key processes,recent advancements,benefits,limitations,and strategies for post-harvest management.The findings indicate that MTs are a major source of HM pollution and contribute significantly to environmental deterioration.Phytoremediation has emerged as a promising,cost-effective,and eco-friendly solution for MT restoration.In addition to mitigating contamination,phytoremediation enhances soil quality,prevents erosion,reduces HM leaching into groundwater,and improves the visual appeal of degraded sites.Research suggests that revegetating MT-contaminated soils with specific plant species can effectively remediate these areas,reducing HM leaching risks while improving soil properties.This review serves as a valuable resource for researchers working on MT restoration,offering insights into the latest advancements in phytoremediation technology and its potential to address the environmental challenges posed by MTs.
文摘Evaluating the pressure of atmospheric pollutant emissions on the atmospheric environment is crucial for effective pollution control and emission reduction policies.This study introduces a novel Atmospheric Environmental Pressure Index(AEPI)and employs a dynamic comprehensive method to evaluate China’s Atmospheric Environmental Pressure(AEP)across 31 provinces from 2008 to 2017.The drivers of AEP were analyzed using a spatial panel data model,uncovering the integral role of pollution reduction policies,particularly the Air Pollution Prevention and Control Action Plan,which led to a 25%reduction in AEP during its enforcement.Our findings reveal significant spatial disparities in AEP,with higher levels in the Beijing-Tianjin-Hebei and Yangtze River Delta regions.The regression analysis identifies economic development,industrial structure,energy efficiency,environmental regulations,and urbanization as key influencing factors,though their impacts vary across different regions,suggesting the need for region-specific pollution control policies.Furthermore,the shift in the AEP gravity center from2008 to 2017 indicated a southeastward movement,suggesting the necessity to focus air pollution control efforts on the southeast provinces.In conclusion,the AEPI developed in this study enables comparative analysis of AEP across different regions and facilitates the monitoring of long-term trends,which is valuable in guiding regional air pollution control in China.
基金supported by U01OH012263,and U01 OH012622 from the National Institute for Occupational Safety and HealthPCF 604934 from Prevent Cancer Foundation+1 种基金National Institutes of Health(NIH)/National Cancer Institute(NCI)1U01CA288425–0P30 ES023515 from the National Institute of Environmental Health Sciences.
文摘This study aimed to identify the worst“bad actors”in mixtures of pollutants contributing to liver damage and shorter telomeres in the U.S.population,using weighted quantile sum(WQS)modeling with stratification by race/ethnicity.We conducted a comprehensive cross-sectional analysis of mixtures of pollutants in National Health and Nutrition Examination Survey datasets:(1)33,979 adults with blood levels of cadmium(Cd),lead(Pb),and mercury,including subsets with measurements of per-/polyfluoroalkyl substances(PFAS),and polychlorinated biphenyls(PCBs)/polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs);and(2)7360 adults with measurements of telomeres,Cd,and Pb.Multivariable-adjusted WQS regression examined associations between WQS mixture indices and liver injury(alanine aminotransferase(ALT)-elevation),advanced liverfibrosis(LF),and telomere length.WQSmetal indices were associated with advanced-LF in all racial/ethnic groups.The top contributor was Cd in the total population and in non-Hispanic Whites(NHW),while Pb was the top contributor in non-Hispanic Blacks(NHB).The WQSmetal-PCB-PCDD/F index was associated with ALT-elevation,with PCB126,Cd and Pb as main contributors;the odds ratio(OR)per decile was 1.50(95%CI,1.26–1.78),while the OR per decile of the WQSmetal-PFAS index was 1.03(95%CI,0.98–1.05),not significant.WQS_(metal indices)were associated with shorter telomeres.Cd was main contributor associated with advanced-LF in NHW,while Pb was the major bad actor in NHB,suggesting that NHB may be especially susceptible to Pb toxicity.Metals were associated with shorter telomeres.Metal and PCB/PCDD/F mixtures were associated with ALT-elevation.Heavy metals and organic chemicals may contribute to liver-related morbidity and healthcare disparities.
基金supported by the China National Natural Science Foundation(No.2212260192043301+1 种基金91843301)the Science and Technology Commission of Shanghai Municipality(20ZR1404300 and 212307128)
文摘The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection are attracting increasing attention.In this paper,the data from 138 papers about different optical hydrogels(OHs)are extracted for statistical analysis.The detection performance and potential of various types of OHs in different environmental pollutant detection scenarios were evaluated and compared to those obtained using the standard detection method.Based on this analysis,the target recognition and sensing mechanisms of two main types of OHs are reviewed and discussed:photonic crystal hydrogels(PCHs)and fluorescent hydrogels(FHs).For PCHs,the environmental stimulus response,target receptors,inverse opal structures,and molecular imprinting techniques related to PCHs are reviewed and summarized.Furthermore,the different types of fluorophores(i.e.,compound probes,biomacromolecules,quantum dots,and luminescent microbes)of FHs are discussed.Finally,the potential academic research directions to address the challenges of applying and developing OHs in environmental sensing are proposed,including the fusion of various OHs,introduction of the latest technologies in various fields to the construction of OHs,and development of multifunctional sensor arrays.
基金supported by the National Natural Science Foundation of China(Nos.41975156,41675119)。
文摘Chemical modifications of proteins induced by ambient ozone(O_(3))and nitrogen oxides(NOx)are of public health concerns due to their potential to trigger respiratory diseases.The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere.Using bovine serum albumin(BSA)as a model protein,we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study.In the laboratory simulation system,the generated gaseous pollutants showed negligible losses.Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%.For environmental exposure experiment,quartz fiber filter was selected as the upper filter with low gaseous O_(3)(8.0%)and NO_(2)(1.7%)losses,and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%.The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions,while environmental factors(e.g.,molecular oxygen and ultraviolet)may cause greater protein monomer losses.Based on the evaluation,the study exemplarily applied the two systems to protein modification and both showed that O_(3) promotes the protein oligomerization and nitration,while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples.The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions.A combination of the two will further reveal the actual mechanism of protein modifications.
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
基金the Biomaterials and Transport Phenomena Laboratory Agreement No.30303-12-2003,at the University of Medea.
文摘Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.
基金supported by the National Natural Science Foundation of China(No.21777139)the National Key Research and Development Program of China(No.2017YFA0207003).
文摘The earthworm-based vermiremediation facilitated with benign chemicals such as nano zero-valent iron(nZVI)is a promising approach for the remediation of a variety of soil contaminants including cyanotoxins.As themost toxic cyanotoxin,microcystin-LR(MC-LR)enter soil via runoff,irrigated surface water and sewage,and the application of cyanobacterial biofertilizers as part of the sustainable agricultural practice.Earthworms in such remediation systems must sustain the potential risk from both nZVI and MC-LR.In the present study,earthworms(Eisenia fetida)were exposed up to 14 days to MC-LR and nZVI(individually and inmixture),and the toxicity was investigated at both the organismal andmetabolic levels,including growth,tissue damage,oxidative stress,metabolic response and gut microbiota.Results showed that co-exposure of MC-LR and nZVI is less potent to earthworms than that of separate exposure.Histological observations in the co-exposure group revealed only minor epidermal brokenness,and KEGG enrichment analysis showed that co-exposure induced earthworms to regulate glutathione biosynthesis for detoxification and reduced adverse effects from MC-LR.The combined use of nZVI promoted the growth and reproduction of soil and earthworm gut bacteria(e.g.,Sphingobacterium and Acinetobacter)responsible for the degradation of MC-LR,whichmight explain the observed antagonism between nZVI and MC-LR in earthworm microcosm.Our study suggests the beneficial use of nZVI to detoxify pollutants in earthworm-based vermiremediation systems where freshwater containing cyanobacterial blooms is frequently used to irrigate soil and supply water for the growth and metabolism of earthworms.
文摘The paper formulates new principles that should form the basis for the development and creation of new environmental monitoring based on heavy UAVs and high-altitude so-called pseudo-satellites capable of operating for a long time at altitudes of 25 - 30 km. In order to develop such principles, this paper analyzes the radioecological situation in the territories of Donetsk and Luhansk regions of Ukraine for rapid and high-quality environmental cleanup and rehabilitation of areas with detected critical levels of environmentally hazardous pollutants. In order to quickly obtain fundamentally new environmental information, it is necessary to conduct multi-parameter, high-precision integrated monitoring of the Earth’s geospheres based on the latest methods and equipment for ground and remote environmental measurements, and new methods and technological means of clean, environmentally safe processing and final disposal. As the most appropriate technology, we propose mobile installations for plasma-chemical pyrolysis of medical waste directly at the place of its generation.
基金supported by the University Salah Boubnider-Constantine 3 (Algeria).
文摘This research aims to study the bio-adsorption process of two dyes,Cibacron Green H3G(CG-H3G)and Terasil Red(TR),in a single system and to bring them closer to the industrial textile discharge by a binary mixture of two dyes(TR+CG-H3G).The Cockle Shell(CS)was used as a natural bio-adsorbent.The characterizations of CS were investigated by Fourier transform infrared(FTIR),X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive X-ray spectroscopy(EDX)and Brunauer–Emmett–Teller(BET).The adsorption potential of Cockle Shells was tested in two cases(single and binary system)and determined by:contact time(0–60 min),bio-adsorption dose(3–15 g/L),initial concentration(10–300 mg/L),temperature(22–61°C)and pH solution(2–12).The study of bio-adsorption(equilibrium and kinetics)was conducted at 22°C.The kinetic studies demon-strated that a pseudo-second-order adsorption mechanism had a good correlation coefficient(R2≥0.999).The Langmuir isotherm modeling provided a well-defined description of TR and CG-H3G bio-adsorption on cockle shells,exhibiting maximum capacities of 29.41 and 3.69 mg/g respectively at 22°C.The thermodynamic study shows that the reaction between the TR,CG-H3G dyes molecules and the bio-adsorbent is exothermic,spontaneous in the range of 22–31°C with the aleatory character decrease at the solid-liquid interface.The study of selectivity in single and binary systems has been performed under optimal operating conditions using the industrial textile rejection pH(pH=6.04).CG-H3G dye is found to have a higher selectivity than TR in single(0–60 min)and binary systems with a range of 6–45 min,as shown by the selectivity measurement.It was discovered that CS has the capability to remove both CG-H3G and TR dyes in both simple and binary systems,making it a superior bio-adsorbent.
基金supported by the Young Talents Program of Jiangsu Cancer Hospital(Grant No.QL201802)the Science and Technology Development Fund of Jiangsu Cancer Hospital(Grant No.ZL202105).
文摘The present study assessed the efficacy and safety of thoracic radiotherapy(TRT)following first-line chemotherapy or chemoimmunotherapy in patients with extensive-stage small cell lung cancer(ES-SCLC),focusing on the influence of different TRT timing strategies(consolidative vs.salvage)on survival rates.We retrospectively analyzed a total of 54 patients with ES-SCLC treated between January 2019 and July 2022.Patients receiving consolidative TRT(cTRT)within three months after completion of first-line treatment were compared with those receiving salvage TRT(sTRT)after disease progression.The primary endpoints were overall survival(OS),progression-free survival(PFS),locoregional-free survival(LRFS),and distant metastasis-free survival(DMFS);the secondary endpoint included safety.The cTRT group(n=41)showed significantly longer median OS(26.6 vs.14.8 months,P=0.048),PFS(12.9 vs.3.5 months,P<0.0001),and DMFS(10.7 vs.3.4 months,P=0.0044)than the sTRT group(n=13).Multivariate analysis revealed that cTRT was an independent,favorable prognostic factor.No significant differences in OS or LRFS were observed between high-dose(≥50 Gy)and low-dose(<50 Gy)TRT.Hematologic and respiratory toxicities were the most frequently reported adverse events,with acceptable tolerability.In conclusion,cTRT after chemoimmunotherapy significantly improves survival outcomes for ES-SCLC patients,and low-dose TRT may be a suitable option.
文摘Reports and claims have been made reflecting opinions of the environmental impacts of the Whein Town Landfill Facility on the residents of the Whein Town Community. This study seeks to examine the environmental effects of the Whein Town Landfill on nearby residents, and the effectiveness of the existing mitigation schemes. This cross-sectional study used 4-point-Likert and 2-point-dichotomous scales questionnaires to collect information from 352 Whein Town community household heads. The findings reveal that “odorous emissions” represent the most critical environmental challenge, severely impacting residents’ well-being and quality of life. By contrast, “garbage spillage along routes” has a minimal impact on residents’ lives, with many residents rating it as “Not Serious”. Six out of eight mitigation implemented schemes achieved a success rate below 25%, one performed at approximately 50%, and only one scheme—the landfill fencing—was effectively implemented, reaching a near-perfect success rate of 99.99%. Therefore, residents of Whein Town are experiencing adverse environmental effects that can be remediated with proper planning and the implementation of existing schemes.
基金supported by the National Natural Science Foundation of China (No.22176148)the Shanghai Rising-Star Program (No.23QB1406400)+1 种基金the Fundamental Research Funds for the Central Universities of Tongji University (No.2023-3-ZD-02)supported by the program INTPART (Plastic Pollution,No.275172)funded by the Research Council of Norway.
文摘The ocean serves as a repository for various types of artificial nanoparticles.Nanoplastics(NPs)and nano zinc oxide(nZnO),which are frequently employed in personal care products and food packaging materials,are likely simultaneously released and eventually into the ocean with surface runoff.Therefore,their mutual influence and shared destiny in marine environment cannot be ignored.This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions.Results showed that NPs remained dispersed in brine,while nZnO formed homoaggregates.In seawater of 35 practical salinity units(PSU),nZnO formed heteroaggregates with NPs,inhibiting NPs mobility and decreasing the recovered mass percentage(Meff)from 24.52%to 12.65%.In 3.5 PSU brackish water,nZnO did not significantly aggregate with NPs,and thus barely affected their mobility.However,NPs greatly enhanced nZnO transport with Meff increasing from 14.20%to 25.08%,attributed to the carrier effect of higher mobility NPs.Cotransport from brackishwater to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU,below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport.This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.
基金supported by the Swedish Energy Agency(P47500-1)the National Key R&D Program of China(2020YFA0710200)+2 种基金the National Natural Science Foundation of China(22378401 and U22A20416)the financial support from STINT(CH2019-8287)financial support from the European Union and Swedish Energy Agency(P2020-90066).
文摘The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces.
基金supported by grants from the National Research Foundation of Korea(NRF)under grant No.RS-2022-00155422 and No.2021R1C1C102014。
文摘Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a reactant and is fed as a liquid phase,such as trickle bed-type reactors in a hydrogen-water isotope exchange(HIE)reaction.The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor.Herein,a platinum-incorporated metal-organic framework(MIL-101)based bifunctional hydrophobic catalyst functionalized with long alkyl chains(C_(12),dodecylamine)and further manufactured with poly(vinylidene fluoride),Pt@MIL-101-12/PVDF,has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water.Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties,with a notable reduction of over 65%in water adsorption capacity and newly introduced liquid water repellency.while exhibiting a negligible increase in mass transfer resistance,i.e.,bifunctional hydrophobicity.Excellent catalytic activity,evaluated via HIE reaction,and its durability underscore the impact of bifunctional hydrophobicity.In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite,highlighting reinforced water diffusion at the microscopic level,affirming the catalyst's bifunctionality in different length scales.With demonstrated radiation resistance,Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions.
基金Supporting Program for funding this work under Project number(RSP2024R328),King Saud University,Riyadh,Saudi Arabia.
文摘The sedimentary geochemistry of St.Martin’s Island is important to determine the origin of the source rock,paleo weathering,tectonic setting,sediment recycling,maturity,sorting,redox condition,and paleo salinity of the sediments.Major oxides,trace elements,and rare earth elements(REEs)obtained from the INAA technique are presented by analyzing the sediment samples collected from the shoreline of St.Martin’s Island,Bangladesh.The elemental ratios,comparison with average upper continental crust(UCC),binary diagrams(Th/Sc vs.Sc,La/Th vs.Hf,Th/Co vs.La/Sc),and chondrite normalized REE patterns exhibit substantial LREE enrichment,relatively fl at HREE fractionation,considerable negative Eu anomalies(average:0.72),indicates the derivation from a source dominated by felsic rock,with contribution from intermediate source and mafi c component.Sediments from St.Martin’s Island exhibit the deposition of sediments in transitional environments of active and passive continental margin settings.Weathering indices value of CIA,PIA,CIW,CIX,and K 2 O/Rb ratio show moderate chemical weathering,indicating that the sediments are chemically mature.Sedimentary redox indicative proxies,such as U/Th,V/Cr,and V/Sc,show an oxic depositional environment during sediment deposition.The intermediate CIA and other weathering index values of the St.Martin’s sediments show that the area had semiarid and humid climatic conditions throughout the deposition.The Rb/K ratio of the St.Martin’s sediments suggests that the development and deposition of the sedimentary sequence of St.Martin’s Island mainly occurred in a brackish water environment during the geological past.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U21A2027)the New Cornerstone Science Foundation through the XPLORER PRIZE(2023-1033).
文摘This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to 2020.Utilizing data from the Infrared Atmospheric Sounding Interfer-ometer(IASI),Generalized Additive Models(GAM),and the GEOS-Chem chemical transport model,we observed a significant increase of NH_(3)VCDs in the YRD between 2014 and 2020.The spatial distribution analysis revealed higher NH_(3)concentrations in the northern part of the YRD region,primarily due to lower precipitation,alkaline soil,and intensive agricul-tural activities.NH_(3)VCDs in the YRD region increased significantly(65.18%)from 2008 to 2020.The highest growth rate occurs in the summer,with an annual average growth rate of 7.2%during the period from 2014 to 2020.Agricultural emissions dominated NH_(3)VCDs during spring and summer,with high concentrations primarily located in the agricultural areas adjacent to densely populated urban zones.Regions within several large urban areas have been discovered to exhibit relatively stable variations in NH_(3)VCDs.The rise in NH_(3)VCDs within the YRD region was primarily driven by the reduction of acidic gases like SO_(2),as emphasized by GAM modeling and sensitivity tests using the GEOS-Chem model.The concentration changes of acidic gases contribute to over 80%of the interannual variations in NH_(3)VCDs.This emphasizes the crucial role of environmental policies targeting the reduction of these acidic gases.Effective emission control is urgent tomitigate environmental hazards and secondary particulate matter,especially in the northern YRD.
基金supported by the National Natural Science Foundation of China(No.82025030,No.72394404)the National Key Research and Development Program of China(No.2022YFC3702700)the National Research Program for Key Issues in Air Pollution Control of China(No.DQGG0401).
文摘As global greenhouse gases continue rising,the urgency of more ambitious action is clearer than ever before.China is the world’s biggest emitter of greenhouse gases and one of the countries affected most by climate change.The evidence about the impacts of climate change on the environment and human health may encourage China to take more decisive action to mitigate greenhouse gas emissions and adapt to climate impacts.
文摘This study was carried out to evaluate the response of Nile tilapia(Oreochromis niloticus)fingerlings to acute copper sulphate and ferrocene toxicity.Nile tilapia fingerlings weighing 2.3±0.2 g were acclimated and randomly distributed at a rate of 10 fish per 30 L aquarium.Fish were exposed to a range of copper sulphate and ferrocene concentrations of 4 mg/L,8 mg/L,12 mg/L,16 mg/L and 2.5 mg/L,5 mg/L,7.5 mg/L,10 mg/L respectively.Fish not exposed to any toxicant served as control.Mortality was assessed and median lethal concentration(LC50)and median lethal time(LT50)were calculated.The 96-h LC50 values obtained for copper sulphate and ferrocene were 7.49 mg/L(confidence interval CI:6.35 to 8.57 mg/L)and 3.55 mg/L(CI:0.98 to 5.17 mg/L)respectively.The LC50 decreased with time of exposure implying that toxicity increased over time,however,LT50 decreased as concentration increased.The safe concentration for copper sulphate derived was 1.913 mg/L and 1.196 mg/L for ferrocene.Histological analyses were carried out on fish gills and skin.The skin histomorphology showed marked and widespread epidermal loss and widespread mycocytic degeneration in treatments with high concentration for both toxicants.The gill morphology showed moderate to severe hyperplasia of the primary gill epithelia leading to partial or complete loss of the secondary lamellae.