This paper aims to present and discuss the use of a power flow methodology based on Gauss elimination method to evaluate the performance of distribution network taking into account the neutral conductor absence at spe...This paper aims to present and discuss the use of a power flow methodology based on Gauss elimination method to evaluate the performance of distribution network taking into account the neutral conductor absence at specific sections, and a development of a methodology based on GA (genetic algorithm) capable of evaluating alternative solutions in different bars of the feeder, in order to propose appropriate solutions to improve the distribution network safety. Besides the technical aspects, the proposed GA methodology takes into account the economic feasibility analysis. The results of power flow simulations have shown that the presence of single-phase transformers along with the absence of the neutral conductor at specific sections of the MV (medium voltage) network may increase the Vng (neutral-to-ground voltage) levels of the feeders involved, jeopardizing the system's safety. On the other hand, the solutions proposed by the GA methodology may reduce the network Vng levels and improve the safety conditions, providing values close to the ones found before the neutral conductor theft.展开更多
This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused b...This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused by the neutral conductor theft. Simulations are made by the software lnterplan and show that the absence of neutral conductor at specific sections of power distribution lines may increase the neutral-to-ground voltages, which compromises the system's safety. The solution developed keeps the technical performance of the power distribution system at satisfactory levels, regarding the voltage profile, or, at least, close to the level before the neutral conductor's theft.展开更多
文摘This paper aims to present and discuss the use of a power flow methodology based on Gauss elimination method to evaluate the performance of distribution network taking into account the neutral conductor absence at specific sections, and a development of a methodology based on GA (genetic algorithm) capable of evaluating alternative solutions in different bars of the feeder, in order to propose appropriate solutions to improve the distribution network safety. Besides the technical aspects, the proposed GA methodology takes into account the economic feasibility analysis. The results of power flow simulations have shown that the presence of single-phase transformers along with the absence of the neutral conductor at specific sections of the MV (medium voltage) network may increase the Vng (neutral-to-ground voltage) levels of the feeders involved, jeopardizing the system's safety. On the other hand, the solutions proposed by the GA methodology may reduce the network Vng levels and improve the safety conditions, providing values close to the ones found before the neutral conductor theft.
文摘This paper aims at analyzing the impact of the neutral conductor absence at specific sections over the performance of the power distribution lines, and proposing alternative solutions to mitigate the problems caused by the neutral conductor theft. Simulations are made by the software lnterplan and show that the absence of neutral conductor at specific sections of power distribution lines may increase the neutral-to-ground voltages, which compromises the system's safety. The solution developed keeps the technical performance of the power distribution system at satisfactory levels, regarding the voltage profile, or, at least, close to the level before the neutral conductor's theft.