期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Review on integral stiffened panel of aircraft fuselage structure
1
作者 Devi Chandra Y.Nukman +2 位作者 Muhammad Adlan Azka S.M.Sapuan J.Yusuf 《Defence Technology(防务技术)》 2025年第4期1-11,共11页
The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuse... The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuselage structures.ISP is a relatively new structure in aircraft industries and is considered the most significant development in a decade.These structures have the potential to replace the conventional stiffened panel due to the emergence of manufacturing technology,including welding,high-speed machining(HSM),extruding,and bonding.Although laser beam welding(LBW)and friction stir welding(FSW)have been applied in aircraft companies,many investigations into ISP continue to be conducted.In this review article,the current state of understanding and advancement of ISP structure is addressed.A particular explanation has been given to(a)buckling performance,(b)fatigue performance of the ISP,(c)modeling and simulation aspects,and(d)the impact of manufacturing decisions in welding processes on the final structural behavior of the ISP during service.Compared to riveted panels,machined ISP had a better compressive buckling load,and FSW integral panels had a lower buckling load than riveted panels.Compressive residual stress decreased the stress intensity factor(SIF)rates,slowing down the growth of fatigue cracks as occurred in FSW and LBW ISP. 展开更多
关键词 Integral stiffened panel BUCKLING FATIGUE Friction stir welding Laser beam welding
在线阅读 下载PDF
Precision bending of high-quality components for volume applications 被引量:8
2
作者 T.WELO F.WIDERE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2100-2110,共11页
Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mech... Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mechanisms that influence dimensional accuracy,including local cross-sectional deformations such as suck-in and volume conservation effects,along with global deformations such as springback.An analytical model was developed to determine the particular influence of different material,geometry and process parameters on dimensional variability of bent components.The results were discussed in terms of overall process capability(Cp) and associated process windows.The results show that different governing mechanisms prevail in various bending operations,meaning that attention has to be placed on controlling those process parameters that really are important to part quality in each specific case.Several strategies may be defined for reducing variability.One alternative may be to design more robust process and tool technology that reduce the effect of upstream parameters on dimensional variability of the formed part.The results show that optimal tool design and technology may in specific cases improve the dimensional accuracy of a formed part.Based on the findings discussed herein,it is concluded that advances in industrial bending operations require focus on improving the understanding of mechanical mechanisms,including models and parameter development,new technology developments,including process,tool,measurement and control capabilities,and process discipline at the shop floor,combined with a basic philosophy of controlling process parameters rather than part attributes. 展开更多
关键词 bending technology tools dimensional accuracy DISTORTIONS SPRINGBACK FORMABILITY
在线阅读 下载PDF
Effect of deformation temperature on precipitation, microstructural evolution, mechanical and corrosion behavior of 6082 Al alloy 被引量:7
3
作者 NikhilKUMAR R.JAYAGANTHAN Heinz-GünterBROKMEIER 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期475-492,共18页
The influence of cryorolling(CR),room temperature rolling(RTR)and post annealing on precipitation,microstructuralevolution(recovery,recrystallisation and grain growth),mechanical and corrosion behavior,was investigate... The influence of cryorolling(CR),room temperature rolling(RTR)and post annealing on precipitation,microstructuralevolution(recovery,recrystallisation and grain growth),mechanical and corrosion behavior,was investigated in the present work.The precipitation kinetics and microstructural morphology of CR,RTR,and post annealed samples were investigated by differentialscanning calorimetry(DSC),transmission electron microscopy(TEM),and electron back scattered diffraction(EBSD)to elucidatethe observed mechanical properties.After annealing at200°C,UTS and hardness of CR samples(345MPa and HV127)wereimproved as compared to RTR samples(320MPa and HV115).The increase in hardness and UTS of CR samples after annealing at200°C was due to precipitation ofβ''from Al matrix,which imparted higher Zener drag effect as compared to RTR samples.Theimprovement in corrosion and pitting potentials was observed for CR samples(?1.321V and?700mV)as compared to RTRsamples(?1.335V and?710mV).In CR samples,heavy dislocation density and dissolution of Mg4Al3Si4-precipitates in the Almatrix have improved corrosion resistance of the alloy through formation of protective passive layer and suppression of galvanic cell,respectively. 展开更多
关键词 aluminum alloy CRYOROLLING mechanical property corrosion potential PRECIPITATION
在线阅读 下载PDF
Material selection of polymeric composite automotive bumper beam using analytical hierarchy process 被引量:3
4
作者 A.HAMBALI S.M.SAPUAN +1 位作者 N.ISMAIL Y.NUKMAN 《Journal of Central South University》 SCIE EI CAS 2010年第2期244-256,共13页
Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate dec... Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision. 展开更多
关键词 COMPOSITE polymer matrix bumper beam analytical hierarchy process
在线阅读 下载PDF
The effect of inlet conditions on the flow and heat transfer in multiple rotating cavity with axial throughflow 被引量:3
5
作者 Christopher Long Peter Childs 《航空动力学报》 EI CAS CSCD 北大核心 2007年第5期683-693,共11页
关键词 轴向直流 热转移 旋转式孔 进口接头
在线阅读 下载PDF
Control of a 3-RRR Planar Parallel Robot Using Fractional Order PID Controller 被引量:3
6
作者 Auday Al-Mayyahi Ammar A.Aidair Chris Chatwin 《International Journal of Automation and computing》 EI CSCD 2020年第6期822-836,共15页
3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the s... 3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications.Thus,robust and stable control is required to deliver high accuracy in comparison to the state of the art.The operation of the mechanism is achieved based on three revolute(3-RRR)joints which are geometrically designed using an open-loop spatial robotic platform.The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints.The main variables in our design are the platform base positions,the geometry of the joint angles,and links of the 3-RRR planar parallel robot.These variables are calcula ted based on Cayley-Menger determinants and bilateration to det ermine the final position of the platform when moving and placing objects.Additionally,a proposed fractional order proportional integral derivative(FOPID)is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot.The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller.Furthermore,real-time implementation has been tested to prove that the design performance is practical. 展开更多
关键词 3-RRR planar parallel robot Cayley-Menger determinants inverse kinematic model bilateration fraction order proportional integral derivate(PID)controller bat optimization algorithm.
原文传递
Corrosion mechanism of CuAl-NiC abradable seal coating system——The influence of porosity,multiphase,and multilayer structure on the corrosion failure 被引量:13
7
作者 Yumeng Ni Fan Zhang +4 位作者 Demian I.Njoku Yingjie Yu Jinshan Pan Meijiang Meng Ying Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第29期258-269,共12页
In this study,the corrosion behavior of the CuAl-NiC abradable seal coating system in chloride solution was investigated to systematically research the effect of porosity,multiphase,and multilayer structure on the cor... In this study,the corrosion behavior of the CuAl-NiC abradable seal coating system in chloride solution was investigated to systematically research the effect of porosity,multiphase,and multilayer structure on the corrosion failure.Through the composition and structure analysis,the corrosion process of the system was predicted and then verified with mercury intrusion porosimetry,cross-section SEM/EDS analysis,and electrochemical measurements.The results demonstrated that the interphase selective corrosion caused the porosity of the top layer to decrease first and then increase during the corrosion development.The interlayer galvanic corrosion,determined by the pore connectivity,is crucial for corrosion failure. 展开更多
关键词 Abradable seal coating system Galvanic corrosion MULTILAYER POROSITY
原文传递
Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling 被引量:1
8
作者 Manoj Kumar Pathak Amit Joshi +1 位作者 K. K. S. Mer R. Jayaganthan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第7期845-856,共12页
Tensile properties, microstructural evolution and fracture toughness of Al 2014 alloy subjected to cryorolling followed by warm rolling (CR + WR) have been investigated in the present study. The solution-treated (ST) ... Tensile properties, microstructural evolution and fracture toughness of Al 2014 alloy subjected to cryorolling followed by warm rolling (CR + WR) have been investigated in the present study. The solution-treated (ST) Al 2014 alloy is cryorolled followed by warm rolling process at different temperatures (110, 170 and 210 ℃). The mechanical properties and microstructural features of deformed and undeformed Al 2014 alloys were characterised by optical microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The CR + WR samples at 170 ℃ showed an improved hardness (179 HV), tensile (UTS 499 MPa, YS 457 MPa) and fracture toughness (KQ = 37.49 MPa y/m, Kee = 37.39 MPa √m and J integral = 33.25 kJ/mm^2) with respect to ST alloy as measured from the tensile and fracture toughness test. The improved mechanical properties of CR + WR alloy are attributed to grain boundary strengthening, combined recovery and recrystallisation, precipitation hardening and dynamic ageing effect during the deformation. The precipitation of metastable spherical phase Al2Cu was responsible for the improved tensile and fracture properties of finegrained Al 2014 alloy observed in the present work. 展开更多
关键词 AL alloys ULTRAFINE grains Fracture TOUGHNESS
原文传递
U-model Enhanced Dynamic Control of a Heavy Oil Pyrolysis/Cracking Furnace 被引量:1
9
作者 Quanmin Zhu Dongya Zhao +1 位作者 Shuzhan Zhang Pritesh Narayan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期577-586,共10页
This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a c... This paper proposes a case study in the control of a heavy oil pyrolysis/cracking furnace with a newly extended U-model based pole placement controller(U-PPC). The major work of the paper includes: 1) establishing a control oriented nonlinear dynamic model with Naphtha cracking and thermal dynamics; 2) analysing a U-model(i.e., control oriented prototype) representation of various popular process model sets; 3)designing the new U-PPC to enhance the control performance in pole placement and stabilisation; 4) taking computational bench tests to demonstrate the control system design and performance with a user-friendly step by step procedure. 展开更多
关键词 Index Terms-Computational experiments heavy oil crackingfurnace Kumar molecular dynamics model for Naphtha crack-ing pole placement controller stabilising controller U-model U-model enhanced controller design.
在线阅读 下载PDF
Impulsive efects on global stability of models based on impulsive diferential equations with “supremum” and variable impulsive perturbations
10
作者 I.M.STAMOVA T.G.STAMOV 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第1期85-96,共12页
Sufficient conditions are investigated for the global stability of the solu tions to models based on nonlinear impulsive differential equations with "supremum" and variable impulsive perturbations. The main tools ar... Sufficient conditions are investigated for the global stability of the solu tions to models based on nonlinear impulsive differential equations with "supremum" and variable impulsive perturbations. The main tools are the Lyapunov functions and Razu mikhin technique. Two illustrative examples are given to demonstrate the effectiveness of the obtained results. 展开更多
关键词 global stability Lyapunov-Razumikhin function nonlinear impulsive dif-ferential equation with "supremum" variable impulsive perturbation
在线阅读 下载PDF
High Density Plasma Nitriding of Al-Cu Alloys for Automotive Parts
11
作者 Tatsuhiko Aizawa Shinji Muraishi Yoshio Sugita 《Journal of Physical Science and Application》 2014年第4期255-261,共7页
Duralumin alloys have been utilized as structural components and parts for aircrafts, train-cars and so forth. Their high specific strength was attractive to those applications; however, their little corrosion resista... Duralumin alloys have been utilized as structural components and parts for aircrafts, train-cars and so forth. Their high specific strength was attractive to those applications; however, their little corrosion resistance and low wear endurance became a fatal demerit in practical applications. In order to overcome these issues of high strength aluminum alloys, high density plasma nitriding is proposed as an effective surface treatment for duralumin. This process has a capability to control the RF- and DC-plasmas independently for nitriding. This enables us to temporally control and describe the plasma state by in-situ plasma diagnosis. This plasma diagnosis was instrumented to search for optimum processing condition to plasma nitriding the duralumin alloys of type A2011. Both type A2011 aluminum alloy plates and pipes were employed to describe the inner nitriding behavior for hardening the duralumin alloys by the present plasma nitriding. 展开更多
关键词 Duralumin alloys A2011 high density plasma nitrding AIN precipitation HARDENING PLATES PIPES heat sink.
在线阅读 下载PDF
Development of an Algorithm for a Triangular Approach to the Sphere Based on the Platonic Solids Using MATLAB Scripts
12
作者 Miguel Heredia Conde Manuel Perez Vazquez 《Journal of Mechanics Engineering and Automation》 2012年第12期742-753,共12页
The sphere is a common object in uncountable engineering problems, which not only appears in structural elements like domes but also in thousands of mechanisms normally used in diverse kinds of machines. To design, ca... The sphere is a common object in uncountable engineering problems, which not only appears in structural elements like domes but also in thousands of mechanisms normally used in diverse kinds of machines. To design, calculate and analyze the behaviour on service of spherical elements, it is essential to have a good method to create an ordered group of discrete points of the spherical surface from the parametric equations commonly used to define the sphere continuously. One of the best known and widely used in high-level programming environment is MATLAB. The programming language has thousands of functions, lots of them specially designed for engineering processes. One of these functions generates a sphere knowing a given radius and shows the result. Nevertheless, this function is really imprecise because it is based on parallels and meridians besides the obtained vertices do not keep a constant distance each other. This causes the fact that it would be appropriate to design a new function to generate accurate discrete approximations of the sphere. The objective of this paper is to create a low-level function in MATLAB to obtain a discrete sphere with high regularity and high approximation in order to provide a good base to solve sphere-based engineering problems. To ensure a perfect symmetry and high regularity platonic bodies, MATLAB will be used as a base to divide the continuous spherical surface in a finite number of regular triangles. The obtained results for the different seed bodies will be represented graphically and compared to each other. The accuracy of each method will be evaluated and compared too. 展开更多
关键词 SPHERE triangular approach platonic bodies MATLAB.
在线阅读 下载PDF
Plasma Nitriding-Assisted Printing of Stainless Steel Punches for Micro-piercing Process
13
作者 Tatsuhiko Aizawa Tomomi Shiratori 《Journal of Mechanics Engineering and Automation》 2017年第1期1-11,共11页
MEMS (micro-electric-mechanical-system) required for miniature, thin mechanical parts as a structural member; e.g., the miniature pumping system consisted of ten to twelve thin metallic plates before joining. At pre... MEMS (micro-electric-mechanical-system) required for miniature, thin mechanical parts as a structural member; e.g., the miniature pumping system consisted of ten to twelve thin metallic plates before joining. At present, those thin shaped sheets were fabricated by the chemical etching. Their geometric inaccuracy as well as long leading time often became an engineering issue. Micro-piercing process was expected to make mass production of thin sheet products with complex and accurate geometry for much shorter leading time once the die for this micro-piercing was built in. In the present paper, a new plasma nitriding-assisted printing was proposed as an automatic production line to fabricate the micro-piercing punch. After preparation of CAD-data of the punch head, its two dimensional geometry was ink-jet printed directly on the AISI420 stainless steel die-substrate. The unprinted surface area was only plasma nitrided at 693 K for 14.4 ks to transform this two dimensional micro-pattern to the three dimensional hardness distribution in the AISI420 substrate. Through the mechanical removal of ink-jet printed area, the flat punch head with sharp edge comers was fabricated in much shorter duration time than the end-milling. SEM-EDX, surface profiling measurement as well as micro-hardness testing were employed to describe each step in the above plasma printing. The thin MEMS stainless steel part with a micro-pendulum as well as three S-letter shaped springs was taken for an example to describe this automatic production procedure of plasma printing from the CAD data mining to the micro-piercing punch finishing. 展开更多
关键词 Plasma printing ink-jet printing plasma nitriding sand-blasting micro-piercing stainless steel punch.
在线阅读 下载PDF
The posterior selection method for hyperparameters in regularized least squares method
14
作者 Yanxin Zhang Jing Chen +1 位作者 Yawen Mao Quanmin Zhu 《Control Theory and Technology》 EI CSCD 2024年第2期184-194,共11页
The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal lik... The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal likelihood maximization method, which are inaccurate or computationally expensive. In this paper, two posterior methods are proposed to select hyperparameters based on different prior knowledge (constraints), which can obtain the optimal hyperparameters using the optimization theory. Moreover, we also give the theoretical optimal constraints, and verify its effectiveness. Numerical simulation shows that the hyperparameters and parameter vector estimate obtained by the proposed methods are the optimal ones. 展开更多
关键词 Regularization method Hyperparameter System identification Least squares algorithm
原文传递
Evaluating Global Navigation Satellite System (GNSS) Constellation Performance for Unmanned Aerial Vehicle (UAV) Navigation Precision
15
作者 Ahad Alotaibi Chris Chatwin Phil Birch 《Journal of Computer and Communications》 2024年第9期39-62,共24页
Accurate localization is paramount for unmanned aerial vehicles (UAVs) spanning various technical and industrial domains, necessitating a comprehensive assessment of global navigation satellite system (GNSS) precision... Accurate localization is paramount for unmanned aerial vehicles (UAVs) spanning various technical and industrial domains, necessitating a comprehensive assessment of global navigation satellite system (GNSS) precision. This study investigates the performance of distinct GNSS constellations in determining the precise location of a building utilizing a high-precision GNSS receiver. The receiver, incorporating advanced multi-frequency and full-constellation positioning capabilities, was integrated with a smartphone via Bluetooth to enable the UAV’s acquisition of centimeter-level positioning data. Sequential utilization of single satellite systems—such as GPS-only, GLONASS-only, Galileo-only, SBAS-only, and BeiDou-only—facilitated the documentation of latitude and longitude coordinates for the designated building. Subsequent comparison of these coordinates with a specialized Geographic Information System (GIS) was conducted to evaluate their positional accuracy. The comparative analysis underscores significant variability in the precision offered by each satellite constellation, providing valuable insights for optimizing UAV navigation across GIS, IoT, construction, and other sectors requiring high-precision localization. This research underscores the significance of high-precision GNSS receivers in enhancing UAV-based geospatial assessments, emphasizing the critical selection of appropriate satellite systems for tailored localization tasks. The study contributes to advancing UAV navigation strategies, ensuring robust and accurate geospatial data collection within diverse operational frameworks. 展开更多
关键词 UAV GNSS Localization PRECISION COMPARATIVE GIS
在线阅读 下载PDF
A new adaptive bending method using closed loop feedback control 被引量:4
16
作者 T.WELO B.GRANLY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2111-2117,共7页
As the competition from companies in low cost countries increases,the need for more automated production which reduces labour cost while improving product quality is required.A new rotary compression bending set-up wi... As the competition from companies in low cost countries increases,the need for more automated production which reduces labour cost while improving product quality is required.A new rotary compression bending set-up with automated closed-loop feedback control is thus being developed.By transferring in-process measurement data into an algorithm for predicting springback and bend angle prior to the unloading sequence,the dimensional accuracy is improved.This work focuses on the development of this steering model.Since the method used does not increase cycle time,it is attractive for high-volume industrial applications.More than 150 bending tests of AA6060 extrusions were conducted to determine the capability of the technology.The results show that by activating the automated closed-loop feedback system,the dimensional accuracy of the bent parts is more than three times better than that obtained by traditional compression bending.Since the steering model permits the direct use of additional process data,such as instant wall thickness and cross sectional distortions,it is believed that extension of the measurement capabilities would improve the accuracy of the methodology even further. 展开更多
关键词 adaptive bending closed-loop feedback dimensional accuracy SPRINGBACK aluminium EXTRUSION
在线阅读 下载PDF
Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility 被引量:24
17
作者 Huixin Liang Youwen Yang +6 位作者 Deqiao Xie Lan Li Ning Mao Changjiang Wang Zongjun Tian Qing jiang Lida Shen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1284-1297,共14页
Porous metal scaffolds play an important role in the orthopedic field, due to their wide applications in prostheses implantation. Some previous studies showed that the scaffolds with trabecular bone structure reconstr... Porous metal scaffolds play an important role in the orthopedic field, due to their wide applications in prostheses implantation. Some previous studies showed that the scaffolds with trabecular bone structure reconstructed via computed tomography had satisfactory biocompatibility. However, the reverse modeling scaffolds were inflexible for customized design. Therefore, a top-down designing biomimetic bone scaffold with favorable mechanical performances and cytocompatibility is urgently demanded for orthopedic implants. An emerging additive manufacturing technique, selective laser melting, was employed to fabricate the trabecular-like porous Ti-6Al-4 V scaffolds with varying irregularities(0.05-0.5) and porosities(48.83%–74.28%) designed through a novel Voronoi-Tessellation based method. Micro-computed tomography and scanning electron microscopy were used to characterize the scaffolds’ morphology.Quasi-static compression tests were performed to evaluate the scaffolds’ mechanical properties. The MG63 cells culture in vitro experiments, including adhesion, proliferation, and differentiation, were conducted to study the cytocompatibility of scaffolds. Compressive tests of scaffolds revealed an apparent elastic modulus range of 1.93–5.24 GPa and an ultimate strength ranging within 44.9–237.5 MPa, which were influenced by irregularity and porosity, and improved by heat treatment. Furthermore, the in vitro assay suggested that the original surface of the SLM-fabricated scaffolds was favorable for osteoblasts adhesion and migration because of micro scale pores and ravines. The trabecular-like porous scaffolds with full irregularity and higher porosity exhibited enhanced cells proliferation and osteoblast differentiation at earlier time, due to their preferable combination of small and large pores with various shapes. This study suggested that selective laser melting-derived Ti-6Al-4 V scaffold with the trabecular-like porous structure designed through Voronoi-Tessellation method, favorable mechanical performance, and good cytocompatibility was a potential biomaterial for orthopedic implants. 展开更多
关键词 IRREGULAR porous structure Selective laser melting Voronoi-Tessellation Mechanical performance In VITRO study
原文传递
Large-eddy simulation: Past, present and the future 被引量:28
18
作者 Yang Zhiyin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第1期11-24,共14页
Large-eddy simulation(LES) was originally proposed for simulating atmospheric flows in the 1960 s and has become one of the most promising and successful methodology for simulating turbulent flows with the improveme... Large-eddy simulation(LES) was originally proposed for simulating atmospheric flows in the 1960 s and has become one of the most promising and successful methodology for simulating turbulent flows with the improvement of computing power. It is now feasible to simulate complex engineering flows using LES. However, apart from the computing power, significant challenges still remain for LES to reach a level of maturity that brings this approach to the mainstream of engineering and industrial computations. This paper will describe briefly LES formalism first, present a quick glance at its history, review its current state focusing mainly on its applications in transitional flows and gas turbine combustor flows, discuss some major modelling and numerical challenges/issues that we are facing now and in the near future, and finish with the concluding remarks. 展开更多
关键词 turbulent turbulence simulating Reynolds transitional mainstream briefly maturity focusing unsteady
原文传递
Fuzzy Tuned PID Controller for Envisioned Agricultural Manipulator 被引量:3
19
作者 Satyam Paul Ajay Arunachalam +2 位作者 Davood Khodadad Henrik Andreasson Olena Rubanenko 《International Journal of Automation and computing》 EI CSCD 2021年第4期568-580,共13页
The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images... The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images requires stable imaging and very precise processing. By installing a camera on a mechanical arm driven by motor, the maintenance of accuracy and stability becomes non-trivial. As per the state-of-the-art, the issue of external camera shake incurred due to vibration is a great concern in capturing accurate images, which may be induced by the driving motor of the manipulator. So, there is a requirement for a stable active controller for sufficient vibration attenuation of the manipulator. However, there are very few reports in agricultural practices which use control algorithms. Although, many control strategies have been utilized to control the vibration in manipulators associated to various applications, no control strategy with validated stability has been provided to control the vibration in such envisioned agricultural manipulator with simple low-cost hardware devices with the compensation of non-linearities. So, in this work, the combination of proportional-integral-differential(PID) control with type-2 fuzzy logic(T2-F-PID) is implemented for vibration control. The validation of the controller stability using Lyapunov analysis is established. A torsional actuator(TA) is applied for mitigating torsional vibration, which is a new contribution in the area of agricultural manipulators. Also, to prove the effectiveness of the controller, the vibration attenuation results with T2-F-PID is compared with conventional PD/PID controllers, and a type-1 fuzzy PID(T1-F-PID) controller. 展开更多
关键词 Proportional-integral-differential(PID)controller fuzzy logic precision agriculture vibration control stability analysis modular manipulator agricultural robot computer numerical control(CNC)farming
原文传递
Wireless Acoustic Sensor Networks and Edge Computing for Rapid Acoustic Monitoring 被引量:7
20
作者 Zhengguo Sheng Saskia Pfersich +3 位作者 Alice Eldridge Jianshan Zhou Daxin Tian Victor C.M.Leung 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期64-74,共11页
Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the afford... Passive acoustic monitoring is emerging as a promising solution to the urgent, global need for new biodiversity assessment methods. The ecological relevance of the soundscape is increasingly recognised, and the affordability of robust hardware for remote audio recording is stimulating international interest in the potential for acoustic methods for biodiversity monitoring.The scale of the data involved requires automated methods,however, the development of acoustic sensor networks capable of sampling the soundscape across time and space and relaying the data to an accessible storage location remains a significant technical challenge, with power management at its core. Recording and transmitting large quantities of audio data is power intensive,hampering long-term deployment in remote, off-grid locations of key ecological interest. Rather than transmitting heavy audio data, in this paper, we propose a low-cost and energy efficient wireless acoustic sensor network integrated with edge computing structure for remote acoustic monitoring and in situ analysis.Recording and computation of acoustic indices are carried out directly on edge devices built from low noise primo condenser microphones and Teensy microcontrollers, using internal FFT hardware support. Resultant indices are transmitted over a ZigBee-based wireless mesh network to a destination server.Benchmark tests of audio quality, indices computation and power consumption demonstrate acoustic equivalence and significant power savings over current solutions. 展开更多
关键词 ACOUSTIC sensor networks EDGE COMPUTING energy EFFICIENCY
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部