The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological...The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Test (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90 m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to highly (W4) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO42−) and chloride (Cl−) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be considered.展开更多
Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean...Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean free paths of acoustic phonons, the engineering of phonon spectra at the nanoscale becomes an important topic. Phonon manipulation allows for active control and management of heat fow, enabling functions such as regulated heat transport. At the same time, phonon transmission, as a novel signal transmission method, holds great potential to revolutionize modern industry like microelectronics technology, and boasts wide-ranging applications. Unlike fermions such as electrons, polarity regulation is difficult to act on phonons as bosons, making the development of effective phonon modulation methods a daunting task.This work reviews the development of phonon engineering and strategies of phonon manipulation at different scales, reports the latest research progress of nanophononic devices such as thermal rectifiers, thermal transistors, thermal memories, and thermoelectric devices,and analyzes the phonon transport mechanisms involved. Lastly, we survey feasible perspectives and research directions of phonon engineering. Thermoelectric analogies, external field regulation, and acousto-optic co-optimization are expected to become future research hotspots.展开更多
Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic C...Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.展开更多
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a...The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.展开更多
Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtain...Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.展开更多
RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomp...RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.展开更多
The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid met...The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid metal droplets,we analyze the influence of different initial conditions and substrate materials on droplet spreading,impact force,and elastic wave propagation on the substrate.It is found that an agglomeration phenomenon can be observed when the liquid metal droplets impact onto a soft elastomer substrate,which is not observed as a metal substrate is employed.Regardless of the substrate material,when surface tension dominates the diffusion,the diffusion factor of droplets is proportional to We(Weber number).It is also observed that the self-similarity of liquid metal droplet impact force on copper substrates,which is not the case for soft elastomer substrates.Using smoothed particle hydrodynamics(SPH)simulations,the time-domain curve and peak point of the droplet can be well predicted for a metal substrate.Furthermore,by recording the acceleration signal on the substrates,we further obtain the energy radiated by elastic waves,providing an explanation for energy conversion during the impact process with varying parameters.The results provide an additional understanding on the complex impact behaviors of liquid metal droplets.展开更多
This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main cr...This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.展开更多
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solu...The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solution concentration,and leaching solution temperature on the leaching behavior of elements Al and V was investigated.Results demonstrate that the leaching rate of Al and V is increased with the rise in leaching solution temperature,the increase in HCl solution concentration,and the enlargement of magnesiothermic self-propagating product particle size.The leaching processes of Al and V are consistent with the chemical reaction control model.When the magnesiothermic self-propagation product with D_(50) of 59.4μm is selected as the raw material,the leaching temperature is 40℃,and 1 mol/L HCl solution is employed,after leaching for 180 min,the leaching rates of Al and V are 24.8%and 12.6%,respectively.The acid-leached product exhibits a porous structure with a specific surface area of 3.5633 m^(2)/g.展开更多
This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specific...This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.展开更多
Purpose–Adding an appropriate pre-sag to the geometry of simple catenary systems for electric railways can improve their performance in dynamic interaction with the pantographs of trains operating under them.The valu...Purpose–Adding an appropriate pre-sag to the geometry of simple catenary systems for electric railways can improve their performance in dynamic interaction with the pantographs of trains operating under them.The value of pre-sag can be obtained by empirical approximation or computationally expensive optimisation.This study aims to define a simple but accurate method to determine a suitable pre-sag without dynamic simulations and to find its limitations.Design/methodology/approach–A quasi-static method to determine the ideal value of pre-sag is described based on elasticity variations.It considers variations of the static contact force.The limits of this method are investigated by comparing it to a parametric dynamic simulation study.In the dynamic simulation,an optimal level of pre-sag is identified for each contact force level.The influence of the speed in the dynamic simulation results is expressed in two parameters:the quasi-static influence in the mean contact force and the dynamic influence in the ratio between the vehicle speed and the wave propagation speed in the contact wire.Findings–The comparison between the suggested method and the dynamic simulations shows a high consistency up to a speed limit of around 40%of the wave propagation speed.The best agreement with the dynamic results is achieved by calculating the optimal pre-sag based on the absolute elasticity variation.Practical implications–The simplified approach for determining the pre-sag is valid for low-speed applications,such as suburban railway lines.For these cases,a highly suitable geometry can be obtained with the suggested method,meaning a significantly reduced computational effort.As a case study for this work,the results are applied to a Swedish suburban rail line upgrade case.Originality/value–The static uplift force is added as a varied parameter in dynamic simulations.The shift in system behaviour from low to high dynamics is described,and how the benefits from pre-sag are visible and then disappear.The limit value of the low-dynamics regime is identified to be 40%.展开更多
Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbo...Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.展开更多
The scarcity and high cost of lithium resources drive the search for sustainable alternatives,positioning potassium-ion batteries(KIBs)as promising energy storage solutions due to the natural abundance and advantageou...The scarcity and high cost of lithium resources drive the search for sustainable alternatives,positioning potassium-ion batteries(KIBs)as promising energy storage solutions due to the natural abundance and advantageous electrochemical properties of the potassium.This study investigates the enhancement of KIB anodes through phase transformation and electronic structure engineering of monolayer 1T-MoS_(2),achieved via doping with highly electronegative non-metal elements:carbon(C),nitrogen(N),oxygen(O),and fluorine(F).Density functional theory(DFT)simulations reveal that electronegative atom doping enhances phase stability,structural robustness,and thermal resilience,which are key properties for highperformance KIB anodes.Among the doped configurations,F and N-doped 1T-MoS_(2)(MoS_(2-)F and MoS_(2)-N)exhibit superior electrochemical performance,showing optimal adsorption energies and significantly improved electronic conductivity,attributable to favorable charge redistribution and increased active potassium adsorption sites.Specifically,MoS_(2)-F and MoS_(2)-N achieve the highest specific capacities of339.65 and 339.17 mAh/g,respectively,while maintaining stability within an ideal open circuit voltage range,outperforming undoped MoS_(2).This work undersco res the potential of electronegative atom doping in 1T-MoS_(2)to enable sustainable,high-capacity energy storage solutions,offering key advancements in the electrochemical and structural properties of KIB anodes.展开更多
The use of unmanned aerial system(UAS)in congested airspace and/or in the proximity of critical infrastructure poses several challenges as far as safe and secure operations are concerned.The paper provides a detailed ...The use of unmanned aerial system(UAS)in congested airspace and/or in the proximity of critical infrastructure poses several challenges as far as safe and secure operations are concerned.The paper provides a detailed description of the architecture and workflow of a platform for UAS traffic management(UTM),designed to pave the way for increased,improved and safer UAS operations in the civil airspace.In particular,access to low-altitude airspace for UAS operations is managed,while facilitating the implementation of beyond visual line-of-sight(BVLOS)operations,and ensuring a safe and efficient integration of UAS into both controlled and uncontrolled airspace.Detection and management of unidentified or uncooperative UAS’s is also taken care of.To this end,an architecture based on three interacting layers is proposed,with the air traffic control at the highest level,the UAS operator(s)at the bottom,and a UAS service supplier acting as an interface.The platform,with its physical and digital elements,guarantees the effective and efficient interaction among these three layers,including management of contingency scenarios,which require a variation of admissible flight volumes for UAS operations and/or fast trajectory re-planning.The platform,developed within a research project which involved several partners,was tested in a relevant operational scenario at the Grottaglie-Taranto airport in Italy.The operators involved in the tests provided positive feedback on the services provided by the platform and the usability of the interfaces,while also making suggestions for adding new features in future developments.展开更多
Purpose:This study investigates whether publication-centric incentive systems,introduced through the National Scientific Accreditation(ASN:Abilitazione Scientifica Nazionale)for professorships in Italy in 2012,contrib...Purpose:This study investigates whether publication-centric incentive systems,introduced through the National Scientific Accreditation(ASN:Abilitazione Scientifica Nazionale)for professorships in Italy in 2012,contribute to adopting“salami publishing”strategies among Italian academics.Design/methodology/approach:A longitudinal bibliometric analysis was conducted on the publication records of over 25,000 Italian science professors to examine changes in publication output and the originality of their work following the implementation of the ASN.Findings:The analysis revealed a significant increase in publication output after the ASN’s introduction,along with a concurrent decline in the originality of publications.However,no evidence was found linking these trends to increased salami slicing practices among the observed researchers.Research limitations:Given the size of our observation field,we propose an innovative indirect approach based on the degree of originality of publications’bibliographies.We know that bibliographic coupling cannot capture salami publications per se,but only topically-related records.On the other hand,controlling for the author’s specialization level in the period,we believe that a higher level of bibliographic coupling in his scientific output can signal a change in his strategy of disseminating the results of his research.The relatively low R-squared values in our models(0.3-0.4)reflect the complexity of the phenomenon under investigation,revealing the presence of unmeasured factors influencing the outcomes,and future research should explore additional variables or alternative models that might account for a greater proportion of the variability.Despite this limitation,the significant predictors identified in our analysis provide valuable insights into the key factors driving the observed outcomes.Practical implications:The results of the study support those who argue that quantitative research assessment frameworks have had very positive effects and should not be dismissed,contrary to the claims of those evoking the occurrence of side effects that do not appear in the empirical analyses.Originality/value:This study provides empirical evidence on the impact of the ASN on publication behaviors in a huge micro-level dataset,contributing to the broader discourse on the effects of quantitative research assessments on academic publishing practices.展开更多
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo...Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.展开更多
Significant advances in battery and fuel cell technologies over the past decade have catalyzed the transition toward electrified transportation systems and large-scale renewable energy integration.Concurrent with thes...Significant advances in battery and fuel cell technologies over the past decade have catalyzed the transition toward electrified transportation systems and large-scale renewable energy integration.Concurrent with these developments,the interdisciplinary role of mechanics has emerged as a critical research frontier.展开更多
This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficul...This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficult to model due to their complex geometries.The proposed method uses an equivalent convective heat transfer coefficient to represent the fins,significantly reducing the computational requirements of the simulations.Validation against the effectiveness-number of transfer units method showed average deviations of 4.4%for the novel louvered fin with two combined holes and 9.5%for conventional configurations,confirming the accuracy of the method.Further application to two-phase refrigerant scenarios using experimental data demonstrated the robustness of the method and its suitability for practical design and optimization of LFFTHXs.The approach not only improves the feasibility of thermal analysis in industrial applications but also provides a foundation for future research into more efficient heat exchanger designs.展开更多
The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined ge...The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined generation of heat and power is analysed.Great attention is dedicated to the correct sizing of the CHP/CCHP plant both in term of energy efficiency and economic viability.A detailed building model is developed and used,through dynamic building simulation,to identify the potential energy and economic savings achievable with the installation of a CHP/CCHP sized based on the results of the simulation itself.The work proves the usefulness of dynamic energy simulation as an evaluation tool for retrofits of CHP plants and provides suggestions on the correct sizing of CHP equipment.It is also meant to prove what could be achieved if those kinds of analysis were carried out during the design of the building.展开更多
文摘The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Test (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90 m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to highly (W4) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO42−) and chloride (Cl−) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be considered.
基金supported by the National Natural Science Foundation of China Grant Nos. 52276072 and 51976096。
文摘Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean free paths of acoustic phonons, the engineering of phonon spectra at the nanoscale becomes an important topic. Phonon manipulation allows for active control and management of heat fow, enabling functions such as regulated heat transport. At the same time, phonon transmission, as a novel signal transmission method, holds great potential to revolutionize modern industry like microelectronics technology, and boasts wide-ranging applications. Unlike fermions such as electrons, polarity regulation is difficult to act on phonons as bosons, making the development of effective phonon modulation methods a daunting task.This work reviews the development of phonon engineering and strategies of phonon manipulation at different scales, reports the latest research progress of nanophononic devices such as thermal rectifiers, thermal transistors, thermal memories, and thermoelectric devices,and analyzes the phonon transport mechanisms involved. Lastly, we survey feasible perspectives and research directions of phonon engineering. Thermoelectric analogies, external field regulation, and acousto-optic co-optimization are expected to become future research hotspots.
基金financially supported by the National Natural Science Foundation of China(Nos.52002294 and 52202111)the Key Research and Development Program of Hubei Province(No.2021BAA208)+3 种基金the Knowledge Innovation Program of Wuhan-Shuguang Project(No.2022010801020364)City University of Hong Kong Donation Research Grant(No.DON-RMG 9229021)City University of Hong Kong Donation Grant(No.9220061)City University of Hong Kong Strategic Research Grant(SRG)(No.7005505)。
文摘Efficient electrocatalysts are vital to large-current hydrogen production in commercial water splitting for green energy generation.Herein,a novel heterophase engineering strategy is described to produce polymorphic CoSe_(2)electrocatalysts.The composition of the electrocatalysts consisting of both cubic CoSe_(2)(c-CoSe_(2))and orthorhombic CoSe_(2)(o-CoSe_(2))phases can be controlled precisely.Our results demonstrate that junction-induced spin-state modulation of Co atoms enhances the adsorption of intermediates and accelerates charge transfer resulting in superior large-current hydrogen evolution reaction(HER)properties.Specifically,the CoSe_(2)based heterophase catalyst with the optimal c-CoSe_(2)content requires an overpotential of merely 240 mV to achieve 1,000 mA·cm^(-2)as well as a Tafel slope of 50.4 mV·dec^(-1).Furthermore,the electrocatalyst can maintain a large current density of 1,500 mA·cm^(-2)for over 320 h without decay.The results reveal the advantages and potential of heterophase junction engineering pertaining to design and fabrication of low-cost transition metal catalysts for large-current water splitting.
文摘The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
基金supported by National Natural Science Foundation of China(12374358,91950207)Guangdong Basic and Applied Basic Research Foundation(2024A1515010420).
文摘Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.
基金National Natural Science Foundation of china(Grant No.12402468)。
文摘RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.
基金supported by the National Natural Science Foundation of China(Grant No.12211530061)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LD22A020001)。
文摘The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid metal droplets,we analyze the influence of different initial conditions and substrate materials on droplet spreading,impact force,and elastic wave propagation on the substrate.It is found that an agglomeration phenomenon can be observed when the liquid metal droplets impact onto a soft elastomer substrate,which is not observed as a metal substrate is employed.Regardless of the substrate material,when surface tension dominates the diffusion,the diffusion factor of droplets is proportional to We(Weber number).It is also observed that the self-similarity of liquid metal droplet impact force on copper substrates,which is not the case for soft elastomer substrates.Using smoothed particle hydrodynamics(SPH)simulations,the time-domain curve and peak point of the droplet can be well predicted for a metal substrate.Furthermore,by recording the acceleration signal on the substrates,we further obtain the energy radiated by elastic waves,providing an explanation for energy conversion during the impact process with varying parameters.The results provide an additional understanding on the complex impact behaviors of liquid metal droplets.
文摘This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金Scientific and Technological Project of Nanyang(23KJGG017)Key Specialized Research&Development and Promotion Project(Scientific and Technological Project)of Henan Province(232102221022)+1 种基金College Students and Technology Innovation Fund Project of Nanyang Institute of Technology(2023139)Project of Doctoral Scientific Research Startup Fund of Nanyang Institute of Technology(NGBJ-2023-25)。
文摘The leaching process of magnesiothermic self-propagating product generated during the multistage deep reduction process was investigated.The influence of magnesiothermic self-propagating product particle size,HCl solution concentration,and leaching solution temperature on the leaching behavior of elements Al and V was investigated.Results demonstrate that the leaching rate of Al and V is increased with the rise in leaching solution temperature,the increase in HCl solution concentration,and the enlargement of magnesiothermic self-propagating product particle size.The leaching processes of Al and V are consistent with the chemical reaction control model.When the magnesiothermic self-propagation product with D_(50) of 59.4μm is selected as the raw material,the leaching temperature is 40℃,and 1 mol/L HCl solution is employed,after leaching for 180 min,the leaching rates of Al and V are 24.8%and 12.6%,respectively.The acid-leached product exhibits a porous structure with a specific surface area of 3.5633 m^(2)/g.
文摘This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.
基金Trafikföorvaltningen Region Stockholm and Trafikverket for funding and supporting this study.
文摘Purpose–Adding an appropriate pre-sag to the geometry of simple catenary systems for electric railways can improve their performance in dynamic interaction with the pantographs of trains operating under them.The value of pre-sag can be obtained by empirical approximation or computationally expensive optimisation.This study aims to define a simple but accurate method to determine a suitable pre-sag without dynamic simulations and to find its limitations.Design/methodology/approach–A quasi-static method to determine the ideal value of pre-sag is described based on elasticity variations.It considers variations of the static contact force.The limits of this method are investigated by comparing it to a parametric dynamic simulation study.In the dynamic simulation,an optimal level of pre-sag is identified for each contact force level.The influence of the speed in the dynamic simulation results is expressed in two parameters:the quasi-static influence in the mean contact force and the dynamic influence in the ratio between the vehicle speed and the wave propagation speed in the contact wire.Findings–The comparison between the suggested method and the dynamic simulations shows a high consistency up to a speed limit of around 40%of the wave propagation speed.The best agreement with the dynamic results is achieved by calculating the optimal pre-sag based on the absolute elasticity variation.Practical implications–The simplified approach for determining the pre-sag is valid for low-speed applications,such as suburban railway lines.For these cases,a highly suitable geometry can be obtained with the suggested method,meaning a significantly reduced computational effort.As a case study for this work,the results are applied to a Swedish suburban rail line upgrade case.Originality/value–The static uplift force is added as a varied parameter in dynamic simulations.The shift in system behaviour from low to high dynamics is described,and how the benefits from pre-sag are visible and then disappear.The limit value of the low-dynamics regime is identified to be 40%.
文摘Although currently,a large part of the existing buildings is considered inefficient in terms of energy,the ability to save energy consumption up to 80%has been proven in residential and commercial buildings.Also,carbon dioxide is one of the most important greenhouse gases contributing to climate change and is responsible for 60%of global warming.The facade of the building,as the main intermediary between the interior and exterior spaces,plays a significant role in adjusting the weather conditions and providing thermal comfort to the residents.In this research,715 different scenarios were defined with the combination of various types of construction materials,and the effect of each of these scenarios on the process of energy loss from the surface of the external walls of the building during the operation period was determined.In the end,these scenarios were compared during a one-year operation period,and the amount of energy consumption in each of these scenarios was calculated.Also,bymeasuring the amount of carbon emissions in buildings during the operation period and before that,let’s look at practical methods to reduce the effects of the construction industry on the environment.By comparing the research findings,it can be seen that the ranking of each scenario in terms of total energy consumption is not necessarily the same as the ranking of energy consumption for gas consumption or electricity consumption for the same scenario.That is,choosing the optimal scenario depends on the type of energy consumed in the building.Finally,we determined the scenarios with the lowest and highest amounts of embodied and operational carbon.In the end,we obtained the latent carbon compensation period for each scenario.This article can help designers and construction engineers optimize the energy consumption of buildings by deciding on the right materials.
基金financial support provided by the NORPART-2021/10355 project,funded by the Norwegian Directorate for Higher Education and Skills(HK-Dir)。
文摘The scarcity and high cost of lithium resources drive the search for sustainable alternatives,positioning potassium-ion batteries(KIBs)as promising energy storage solutions due to the natural abundance and advantageous electrochemical properties of the potassium.This study investigates the enhancement of KIB anodes through phase transformation and electronic structure engineering of monolayer 1T-MoS_(2),achieved via doping with highly electronegative non-metal elements:carbon(C),nitrogen(N),oxygen(O),and fluorine(F).Density functional theory(DFT)simulations reveal that electronegative atom doping enhances phase stability,structural robustness,and thermal resilience,which are key properties for highperformance KIB anodes.Among the doped configurations,F and N-doped 1T-MoS_(2)(MoS_(2-)F and MoS_(2)-N)exhibit superior electrochemical performance,showing optimal adsorption energies and significantly improved electronic conductivity,attributable to favorable charge redistribution and increased active potassium adsorption sites.Specifically,MoS_(2)-F and MoS_(2)-N achieve the highest specific capacities of339.65 and 339.17 mAh/g,respectively,while maintaining stability within an ideal open circuit voltage range,outperforming undoped MoS_(2).This work undersco res the potential of electronegative atom doping in 1T-MoS_(2)to enable sustainable,high-capacity energy storage solutions,offering key advancements in the electrochemical and structural properties of KIB anodes.
基金supported by the European Union and Italian Ministry of University and Research through the call PON Research and Innovation 2014-2020,Axis Ⅱ,Action 2,project AcrOSS(Environment for Safe Operations of Remotely Piloted Aircraft),project number ARS01_00702-CUP:F36C18000210005.
文摘The use of unmanned aerial system(UAS)in congested airspace and/or in the proximity of critical infrastructure poses several challenges as far as safe and secure operations are concerned.The paper provides a detailed description of the architecture and workflow of a platform for UAS traffic management(UTM),designed to pave the way for increased,improved and safer UAS operations in the civil airspace.In particular,access to low-altitude airspace for UAS operations is managed,while facilitating the implementation of beyond visual line-of-sight(BVLOS)operations,and ensuring a safe and efficient integration of UAS into both controlled and uncontrolled airspace.Detection and management of unidentified or uncooperative UAS’s is also taken care of.To this end,an architecture based on three interacting layers is proposed,with the air traffic control at the highest level,the UAS operator(s)at the bottom,and a UAS service supplier acting as an interface.The platform,with its physical and digital elements,guarantees the effective and efficient interaction among these three layers,including management of contingency scenarios,which require a variation of admissible flight volumes for UAS operations and/or fast trajectory re-planning.The platform,developed within a research project which involved several partners,was tested in a relevant operational scenario at the Grottaglie-Taranto airport in Italy.The operators involved in the tests provided positive feedback on the services provided by the platform and the usability of the interfaces,while also making suggestions for adding new features in future developments.
文摘Purpose:This study investigates whether publication-centric incentive systems,introduced through the National Scientific Accreditation(ASN:Abilitazione Scientifica Nazionale)for professorships in Italy in 2012,contribute to adopting“salami publishing”strategies among Italian academics.Design/methodology/approach:A longitudinal bibliometric analysis was conducted on the publication records of over 25,000 Italian science professors to examine changes in publication output and the originality of their work following the implementation of the ASN.Findings:The analysis revealed a significant increase in publication output after the ASN’s introduction,along with a concurrent decline in the originality of publications.However,no evidence was found linking these trends to increased salami slicing practices among the observed researchers.Research limitations:Given the size of our observation field,we propose an innovative indirect approach based on the degree of originality of publications’bibliographies.We know that bibliographic coupling cannot capture salami publications per se,but only topically-related records.On the other hand,controlling for the author’s specialization level in the period,we believe that a higher level of bibliographic coupling in his scientific output can signal a change in his strategy of disseminating the results of his research.The relatively low R-squared values in our models(0.3-0.4)reflect the complexity of the phenomenon under investigation,revealing the presence of unmeasured factors influencing the outcomes,and future research should explore additional variables or alternative models that might account for a greater proportion of the variability.Despite this limitation,the significant predictors identified in our analysis provide valuable insights into the key factors driving the observed outcomes.Practical implications:The results of the study support those who argue that quantitative research assessment frameworks have had very positive effects and should not be dismissed,contrary to the claims of those evoking the occurrence of side effects that do not appear in the empirical analyses.Originality/value:This study provides empirical evidence on the impact of the ASN on publication behaviors in a huge micro-level dataset,contributing to the broader discourse on the effects of quantitative research assessments on academic publishing practices.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072105,11932006,and 52308498)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220976).
文摘Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.
文摘Significant advances in battery and fuel cell technologies over the past decade have catalyzed the transition toward electrified transportation systems and large-scale renewable energy integration.Concurrent with these developments,the interdisciplinary role of mechanics has emerged as a critical research frontier.
基金supported by the National Natural Science Foundation of China(Grant No.12272345).
文摘This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficult to model due to their complex geometries.The proposed method uses an equivalent convective heat transfer coefficient to represent the fins,significantly reducing the computational requirements of the simulations.Validation against the effectiveness-number of transfer units method showed average deviations of 4.4%for the novel louvered fin with two combined holes and 9.5%for conventional configurations,confirming the accuracy of the method.Further application to two-phase refrigerant scenarios using experimental data demonstrated the robustness of the method and its suitability for practical design and optimization of LFFTHXs.The approach not only improves the feasibility of thermal analysis in industrial applications but also provides a foundation for future research into more efficient heat exchanger designs.
文摘The present paper analyses a case study of the application of dynamic energy simulation on the energy efficiency improvement process of an existing commercial building,the retrofit of a CHP machine for the combined generation of heat and power is analysed.Great attention is dedicated to the correct sizing of the CHP/CCHP plant both in term of energy efficiency and economic viability.A detailed building model is developed and used,through dynamic building simulation,to identify the potential energy and economic savings achievable with the installation of a CHP/CCHP sized based on the results of the simulation itself.The work proves the usefulness of dynamic energy simulation as an evaluation tool for retrofits of CHP plants and provides suggestions on the correct sizing of CHP equipment.It is also meant to prove what could be achieved if those kinds of analysis were carried out during the design of the building.