As part of the national strategy to further develop the wind energy sector,the eight prefectures of Upper Guinea have been selected.Using meteorological data recorded over thirty years(1991-2021)at a height of 20 m,we...As part of the national strategy to further develop the wind energy sector,the eight prefectures of Upper Guinea have been selected.Using meteorological data recorded over thirty years(1991-2021)at a height of 20 m,we assessed wind resources in terms of characteristic speeds,power and available energy.To this end,the Weibull distribution method was used and the following values were obtained:3.66 m/s for the average speed;1,102.83 W/m^(2)for the available power and 8,747.06 kWh/m^(2)/year for the annual available energy.展开更多
Seawater is the most abundant source of molecular hydrogen.Utilizing the hydrogen reserves present in the seawater may inaugurate innovative strategies aimed at advancing sustainable energy and environmental preservat...Seawater is the most abundant source of molecular hydrogen.Utilizing the hydrogen reserves present in the seawater may inaugurate innovative strategies aimed at advancing sustainable energy and environmental preservation endeavors in the future.Recently,there has been a surge in study in the field addressing the production of hydrogen through the electrochemical seawater splitting.However,the performance and durability of the electrode have limitations due to the fact that there are a few challenges that need to be addressed in order to make the technology suitable for the industrial purpose.The active site blockage caused by chloride ions that are prevalent in seawater and chloride corrosion is the most significant issue;it has a negative impact on both the activity and the durability of the anode component.Addressing this particular issue is of upmost importance in the seawater splitting area.This review concentrates on the newly developed materials and techniques for inhibiting chloride ions by blocking the active sites,simultaneously preventing the chloride corrosion.It is anticipated that the concept will be advantageous for a large audience and will inspire researchers to study on this particular area of concern.展开更多
Aluminum(Al)exhibits excellent electrical conductivity,mechanical ductility,and good chemical compatibility with high-ionic-conductivity electrolytes.This makes it more suitable as an anode material for all-solid-stat...Aluminum(Al)exhibits excellent electrical conductivity,mechanical ductility,and good chemical compatibility with high-ionic-conductivity electrolytes.This makes it more suitable as an anode material for all-solid-state lithium batteries(ASSLBs)compared to the overly reactive metallic lithium anode and the mechanically weak silicon anode.This study finds that the pre-lithiated Al anode demonstrates outstanding interfacial stability with the Li_6PS_5Cl(LPSCl)electrolyte,maintaining stable cycling for over 1200 h under conditions of deep charge-discharge.This paper combines the pre-lithiated Al anode with a high-nickel cathode,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),paired with the highly ionic conductive LPSCl electrolyte,to design an ASSLB with high energy density and stability.Using anode pre-lithiation techniques,along with dual-reinforcement technology between the electrolyte and the cathode active material,the ASSLB achieves stable cycling for 1000 cycles at a 0.2C rate,with a capacity retention rate of up to 82.2%.At a critical negative-to-positive ratio of 1.1,the battery's specific energy reaches up to 375 Wh kg^(-1),and it maintains over 85.9%of its capacity after 100 charge-discharge cycles.This work provides a new approach and an excellent solution for developing low-cost,high-stability all-solid-state batteries.展开更多
Rechargeable magnesium batteries are promising alternatives to traditional lithium batteries because of the high abundance of Mg compounds in earth crust,their low toxicity,and possible favorable properties as electro...Rechargeable magnesium batteries are promising alternatives to traditional lithium batteries because of the high abundance of Mg compounds in earth crust,their low toxicity,and possible favorable properties as electrodes'material.However,Mg metal anodes face several challenges,notably the natively existence of an inactive oxide layer on their surfaces,which reduces their effectiveness.Additionally,interactions of Mg electrodes with electrolyte solutions'components can lead to the formation of insulating surface layers,that can fully block them for ions transport.This review addresses these issues by focusing on surface treatments strategies to enhance electrochemical performance of Mg anodes.It highlights chemical and physical modification techniques to prevent oxidation and inactive-layers formation,as well as their practical implications for MIBs.We also examined the impact of Mg anodes'surface engineering on their electrochemical reversibility and cycling efficiency.Finally,future research directions to improve the performance and commercial viability of magnesium anodes and advance development of high-capacity,safe,and cost-effective energy storage systems based on magnesium electrochemistry are discussed.展开更多
Understanding the degradation phenomenon of proton exchange membrane fuel cells under electrochemical cycling requires an analysis of the porous carbon support structure.Key factors contributing to this phenomenon inc...Understanding the degradation phenomenon of proton exchange membrane fuel cells under electrochemical cycling requires an analysis of the porous carbon support structure.Key factors contributing to this phenomenon include changes in the total porosity and viable surface area for electrochemical reactions.Electron tomography-based serial section imaging using focused ion beam-scanning electron microscopy(FIB-SEM)can elucidate this phenomenon at a nanoscale resolution.However,this highresolution tomographic analysis requires a huge image dataset and manual inputs in rule-based workflows;these requirements are time-consuming and often cause experimental difficulties and unreliable interpretations.We propose a deep learning-empowered approach comprising a two-step automated process for image interpolation and semantic segmentation to address the practical issues encountered in FIB-SEM electron tomography.An optimally trained interpolation model can reduce the image data requirement by more than 95%to analyze the structural degradation of carbon supports after electrochemical cycling while maintaining the reliability obtained in conventional tomographic analysis with several hundred images.Because the subsequent image segmentation model excludes a complicated manual filtering process,the relevant structural parameters can be reliably measured without human bias.Our sparse-section imaging-based deep learning process can allow cost-efficient analysis and reliable measurement of the degree of cycling-induced carbon corrosion.展开更多
With electric vehicles(EVs)emerging as a primary mode of transportation,ensuring their reliable operation in harsh environments is crucial.However,lithium-ion batteries(LIBs)suffer from severe polarization at low temp...With electric vehicles(EVs)emerging as a primary mode of transportation,ensuring their reliable operation in harsh environments is crucial.However,lithium-ion batteries(LIBs)suffer from severe polarization at low temperatures,limiting their operation in cold climates.In addition,difficulties in discovering new battery materials have highlighted a growing demand for innovative electrode designs that achieve high performance,even at low temperatu res.To address this issue,we prepared a thin,resistive,and patterned carbon interlayer on the anode current collector.This carbon-patterned layer(CPL)serves as a self-heating layer to efficiently elevate the entire cell temperature,thus improving the rate capability and cyclability at low temperatures while maintaining the performance at room temperature.Furthermore,we validated the versatile applicability of CPLs to large-format LIB cells through experimental studies and electrochemo-thermal multiphysics modeling and simulations,with the results confirming 11%capacity enhancement in 21,700 cylindrical cells at a 0.5C-rate and-24℃.We expect this electrode design to offer reliable power delivery in harsh climates,thereby potentially expanding the applications of LIBs.展开更多
Composite cathodes integrating Ni-rich layered oxides and oxide solid electrolytes are essential for highenergy all-solid-state lithium-ion batteries(ASSLBs),yet interfacial degradation during high-temperature co-sint...Composite cathodes integrating Ni-rich layered oxides and oxide solid electrolytes are essential for highenergy all-solid-state lithium-ion batteries(ASSLBs),yet interfacial degradation during high-temperature co-sintering(>600℃)remains a critical challenge.While surface passivation strategies mitigate reactions below 400℃,their effectiveness diminishes at elevated temperatures due to inability to counteract Li^(+)concentration gradients.Here,we introduce in situ lithium compensators,i.e.,LiOH/Li_(2)CO_(3),into NCM-LATP composite cathodes to dynamically replenish Li^(+)during co-sintering.These additives melt to form transient Li^(+)-rich phases that back-diffuse Li^(+)into NCM lattices,suppressing layered-to-rock salt transitions and stabilizing the interface.Quasi in situ XRD confirms retention of the layered structure at temperature up to 700℃,while electrochemical tests demonstrate a reversible capacity of 222.2 mA h g^(-1)—comparable to NCM before co-sintering—and an impressive 65.3% capacity retention improvement over100 cycles.In contrast,uncompensated cathodes exhibit severe degradation to 96.5 mA h g^(-1)due to Li depletion and resistive Li-Ti-O interphases.This strategy integrates sacrificial chemistry with scalable powder-mixing workflows,achieving a 93.4% reduction in interfacial impedance.By addressing Li^(+)flux homogenization and structural stability,this work provides a practical pathway toward industrialscale fabrication of high-performance ASSLBs.展开更多
Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utili...Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries,resulting in battery performance deterioration with a reduced capacity.Here,we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries.Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders,considering physicochemical properties such as mechanical properties and adhesion.The introduction of abundant sulfonate groups of binders(i)allows fast and sufficient electrolyte wetting,and(ii)improves ionic conduction in thick electrodes,enabling a significant increase in reversible capacities under various current densities.Further,the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes.Overall,our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.展开更多
This study described a hydrometallurgical method to investigate the separation of rare earth elements(REEs)from rare earth polishing powder wastes(REPPWs)containing large amounts of rare earth oxides with a major ...This study described a hydrometallurgical method to investigate the separation of rare earth elements(REEs)from rare earth polishing powder wastes(REPPWs)containing large amounts of rare earth oxides with a major phase of CeO2 and minor phases of La2O3,Pr2O3,and Nd2O3 using a process devised by the authors.The suggested approach consisted of five processes:the synthesis of NaR E(SO4)2·xH2O from rare earth oxides in Na2SO4-H2SO4-H2 O solutions(Process 1),the conversion of NaR E(SO4)2·xH2O into RE(OH)3 using NaO H(Process 2),and the oxidation of Ce(OH)3 into Ce(OH)4 using air with O2 injection(Process 3),followed by Processes 4 and 5 for separation of REEs by acid leaching using HCl and H2SO4,respectively.To confirm the high yield of NaR E(SO4)2·xH2O in Process 1,experiments were carried out under various Na2SO4 concentrations(0.4–2.5 mol/L),sulfuric acid concentrations(6–14 mol/L),and reaction temperatures(95–125 oC).In addition,the effect of the pH value on the separation of Ce(OH)4 in HCl-H2 O solutions with Ce(OH)4,La-,Pr-,and Nd(OH)3 in Process 4 was also investigated.On the basis of above results,the possibility of effective separation of REEs from REPPWs could be confirmed.展开更多
1. Foreword Energy storage plays a key role in the transition towards a carbon-neutral economy. By balancing power grids and saving surplus energy, it represents a concrete means of improving energy efficiency and int...1. Foreword Energy storage plays a key role in the transition towards a carbon-neutral economy. By balancing power grids and saving surplus energy, it represents a concrete means of improving energy efficiency and integrating more renewable energy sources into electricity systems. A variety of technologies to store energy are developing at a fast pace and increasingly becomingmoremarketcompetitive,includingtraditional electric energy storage, thermal energy storage, and newly developed hydrogen energy storage, etc. The demand for energy storage system with high power and efficiency boosts the development in the advanced techniques and materials,such as batteries, super-capacitors, molten salts, and catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER).展开更多
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are ...Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c...Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.展开更多
This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances t...This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.展开更多
The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the a...The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.展开更多
The Janus MoSSe and alloy MoS_(x)Se_((1-x)),belonging to the family of two-dimensional(2D)transition metal dichalcogenides(TMDs),have gained significant attention for their potential applications in nanotechnology.The...The Janus MoSSe and alloy MoS_(x)Se_((1-x)),belonging to the family of two-dimensional(2D)transition metal dichalcogenides(TMDs),have gained significant attention for their potential applications in nanotechnology.The unique asymmetric structure of Janus MoSSe provides intriguing possibilities for tailored applications.The alloy MoS_(x)Se_((1-x))offers a tunable composition,allowing for the fine-tuning of the properties to meet specific requirements.These materials exhibit remarkable mechanical,electrical,and optical properties,including a tunable band gap,high absorption coefficient,and photoconductivity.The vibrational and magnetic properties also make it a promising candidate for nanoscale sensing and magnetic storage applications.Properties of these materials can be precisely controlled through different approaches such as size-dependent properties,phase engineering,doping,alloying,defect and vacancy engineering,intercalation,morphology,and heterojunction or hybridisation.Various synthesis methods for 2D Janus MoSSe and alloy MoS_(x)Se_((1-x))are discussed,including hydro/solvothermal,chemical vapour transport,chemical vapour deposition,physical vapour depositio,and other approaches.The review also presents the latest advancements in Janus and alloy MoSSe-based applications,such as chemical and gas sensors,surface-enhanced Raman spectroscopy,field emission,and energy storage.Moreover,the review highlights the challenges and future directions in the research of these materials,including the need for improved synthesis methods,understanding of their stability,and exploration of new applications.Despite the early stages of research,both the MoSSe-based materials have shown significant potential in various fields,and this review provides valuable insights for researchers and engineers interested in exploring its potential.展开更多
The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving incr...The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.展开更多
Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals...Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.展开更多
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C...With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.展开更多
文摘As part of the national strategy to further develop the wind energy sector,the eight prefectures of Upper Guinea have been selected.Using meteorological data recorded over thirty years(1991-2021)at a height of 20 m,we assessed wind resources in terms of characteristic speeds,power and available energy.To this end,the Weibull distribution method was used and the following values were obtained:3.66 m/s for the average speed;1,102.83 W/m^(2)for the available power and 8,747.06 kWh/m^(2)/year for the annual available energy.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00436563)supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(Grant No.RS-2023-00284361).
文摘Seawater is the most abundant source of molecular hydrogen.Utilizing the hydrogen reserves present in the seawater may inaugurate innovative strategies aimed at advancing sustainable energy and environmental preservation endeavors in the future.Recently,there has been a surge in study in the field addressing the production of hydrogen through the electrochemical seawater splitting.However,the performance and durability of the electrode have limitations due to the fact that there are a few challenges that need to be addressed in order to make the technology suitable for the industrial purpose.The active site blockage caused by chloride ions that are prevalent in seawater and chloride corrosion is the most significant issue;it has a negative impact on both the activity and the durability of the anode component.Addressing this particular issue is of upmost importance in the seawater splitting area.This review concentrates on the newly developed materials and techniques for inhibiting chloride ions by blocking the active sites,simultaneously preventing the chloride corrosion.It is anticipated that the concept will be advantageous for a large audience and will inspire researchers to study on this particular area of concern.
基金the technical support for Nano-X from Suzhou Institute of Nano-Tech and NanoBionics,Chinese Academy of Sciences(SINANO)supported by the National Key R&D Program of China(2021YFB3800300)+2 种基金the National Natural Science Foundation of China(22179059,22239002,92372201)the science and technology innovation fund for emission peak and carbon neutrality of Jiangsu province(BK20231512,BK20220034)the Key R&D project funded by department of science and technology of Jiangsu Province(BE2020003)。
文摘Aluminum(Al)exhibits excellent electrical conductivity,mechanical ductility,and good chemical compatibility with high-ionic-conductivity electrolytes.This makes it more suitable as an anode material for all-solid-state lithium batteries(ASSLBs)compared to the overly reactive metallic lithium anode and the mechanically weak silicon anode.This study finds that the pre-lithiated Al anode demonstrates outstanding interfacial stability with the Li_6PS_5Cl(LPSCl)electrolyte,maintaining stable cycling for over 1200 h under conditions of deep charge-discharge.This paper combines the pre-lithiated Al anode with a high-nickel cathode,LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2),paired with the highly ionic conductive LPSCl electrolyte,to design an ASSLB with high energy density and stability.Using anode pre-lithiation techniques,along with dual-reinforcement technology between the electrolyte and the cathode active material,the ASSLB achieves stable cycling for 1000 cycles at a 0.2C rate,with a capacity retention rate of up to 82.2%.At a critical negative-to-positive ratio of 1.1,the battery's specific energy reaches up to 375 Wh kg^(-1),and it maintains over 85.9%of its capacity after 100 charge-discharge cycles.This work provides a new approach and an excellent solution for developing low-cost,high-stability all-solid-state batteries.
基金supported by the Global Joint Research Program funded by the Pukyong National University(202411790001)the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)+2 种基金funded by the Ministry of Science and ICT(RS-2024-00446825)the Technology Innovation Program(RS-2024-00418815)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘Rechargeable magnesium batteries are promising alternatives to traditional lithium batteries because of the high abundance of Mg compounds in earth crust,their low toxicity,and possible favorable properties as electrodes'material.However,Mg metal anodes face several challenges,notably the natively existence of an inactive oxide layer on their surfaces,which reduces their effectiveness.Additionally,interactions of Mg electrodes with electrolyte solutions'components can lead to the formation of insulating surface layers,that can fully block them for ions transport.This review addresses these issues by focusing on surface treatments strategies to enhance electrochemical performance of Mg anodes.It highlights chemical and physical modification techniques to prevent oxidation and inactive-layers formation,as well as their practical implications for MIBs.We also examined the impact of Mg anodes'surface engineering on their electrochemical reversibility and cycling efficiency.Finally,future research directions to improve the performance and commercial viability of magnesium anodes and advance development of high-capacity,safe,and cost-effective energy storage systems based on magnesium electrochemistry are discussed.
基金supported by the Technology Innovation Program(No.20011712)funded by the Ministry of Trade,Industry,and Energy(MOTIE,Korea)a National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(No.2022M3J1A108538),Korea+2 种基金the support of the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00444986,50%)the Institute for Basic Science(IBS-R036-D1)。
文摘Understanding the degradation phenomenon of proton exchange membrane fuel cells under electrochemical cycling requires an analysis of the porous carbon support structure.Key factors contributing to this phenomenon include changes in the total porosity and viable surface area for electrochemical reactions.Electron tomography-based serial section imaging using focused ion beam-scanning electron microscopy(FIB-SEM)can elucidate this phenomenon at a nanoscale resolution.However,this highresolution tomographic analysis requires a huge image dataset and manual inputs in rule-based workflows;these requirements are time-consuming and often cause experimental difficulties and unreliable interpretations.We propose a deep learning-empowered approach comprising a two-step automated process for image interpolation and semantic segmentation to address the practical issues encountered in FIB-SEM electron tomography.An optimally trained interpolation model can reduce the image data requirement by more than 95%to analyze the structural degradation of carbon supports after electrochemical cycling while maintaining the reliability obtained in conventional tomographic analysis with several hundred images.Because the subsequent image segmentation model excludes a complicated manual filtering process,the relevant structural parameters can be reliably measured without human bias.Our sparse-section imaging-based deep learning process can allow cost-efficient analysis and reliable measurement of the degree of cycling-induced carbon corrosion.
基金financially supported by the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No.22-CM-FC-20the support from the DGIST Supercomputing and Bigdata Center。
文摘With electric vehicles(EVs)emerging as a primary mode of transportation,ensuring their reliable operation in harsh environments is crucial.However,lithium-ion batteries(LIBs)suffer from severe polarization at low temperatures,limiting their operation in cold climates.In addition,difficulties in discovering new battery materials have highlighted a growing demand for innovative electrode designs that achieve high performance,even at low temperatu res.To address this issue,we prepared a thin,resistive,and patterned carbon interlayer on the anode current collector.This carbon-patterned layer(CPL)serves as a self-heating layer to efficiently elevate the entire cell temperature,thus improving the rate capability and cyclability at low temperatures while maintaining the performance at room temperature.Furthermore,we validated the versatile applicability of CPLs to large-format LIB cells through experimental studies and electrochemo-thermal multiphysics modeling and simulations,with the results confirming 11%capacity enhancement in 21,700 cylindrical cells at a 0.5C-rate and-24℃.We expect this electrode design to offer reliable power delivery in harsh climates,thereby potentially expanding the applications of LIBs.
基金financially supported by the National Natural Science Foundation of China(52102206)the Natural Science Foundation of Beijing Municipality-Shunyi Innovation Collaborative Joint Fund(L247018)+2 种基金the Natural Science Foundation of Beijing Municipality(2254076 and 2252024)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(246Z4412G)the Fundamental Research Funds for the Central Universities(2025MS022,North China Electric Power University)。
文摘Composite cathodes integrating Ni-rich layered oxides and oxide solid electrolytes are essential for highenergy all-solid-state lithium-ion batteries(ASSLBs),yet interfacial degradation during high-temperature co-sintering(>600℃)remains a critical challenge.While surface passivation strategies mitigate reactions below 400℃,their effectiveness diminishes at elevated temperatures due to inability to counteract Li^(+)concentration gradients.Here,we introduce in situ lithium compensators,i.e.,LiOH/Li_(2)CO_(3),into NCM-LATP composite cathodes to dynamically replenish Li^(+)during co-sintering.These additives melt to form transient Li^(+)-rich phases that back-diffuse Li^(+)into NCM lattices,suppressing layered-to-rock salt transitions and stabilizing the interface.Quasi in situ XRD confirms retention of the layered structure at temperature up to 700℃,while electrochemical tests demonstrate a reversible capacity of 222.2 mA h g^(-1)—comparable to NCM before co-sintering—and an impressive 65.3% capacity retention improvement over100 cycles.In contrast,uncompensated cathodes exhibit severe degradation to 96.5 mA h g^(-1)due to Li depletion and resistive Li-Ti-O interphases.This strategy integrates sacrificial chemistry with scalable powder-mixing workflows,achieving a 93.4% reduction in interfacial impedance.By addressing Li^(+)flux homogenization and structural stability,this work provides a practical pathway toward industrialscale fabrication of high-performance ASSLBs.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1070168,2020R1C1C1004322)the Korea Institute of Industrial Technology as Development of core technology for smart wellness care based on cleaner production process technology(KITECH-PEH23030)+1 种基金supported by the Renewable Surplus Sector Coupling Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20226210100050)the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.CPS21141-100)。
文摘Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries,resulting in battery performance deterioration with a reduced capacity.Here,we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries.Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders,considering physicochemical properties such as mechanical properties and adhesion.The introduction of abundant sulfonate groups of binders(i)allows fast and sufficient electrolyte wetting,and(ii)improves ionic conduction in thick electrodes,enabling a significant increase in reversible capacities under various current densities.Further,the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes.Overall,our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.
文摘This study described a hydrometallurgical method to investigate the separation of rare earth elements(REEs)from rare earth polishing powder wastes(REPPWs)containing large amounts of rare earth oxides with a major phase of CeO2 and minor phases of La2O3,Pr2O3,and Nd2O3 using a process devised by the authors.The suggested approach consisted of five processes:the synthesis of NaR E(SO4)2·xH2O from rare earth oxides in Na2SO4-H2SO4-H2 O solutions(Process 1),the conversion of NaR E(SO4)2·xH2O into RE(OH)3 using NaO H(Process 2),and the oxidation of Ce(OH)3 into Ce(OH)4 using air with O2 injection(Process 3),followed by Processes 4 and 5 for separation of REEs by acid leaching using HCl and H2SO4,respectively.To confirm the high yield of NaR E(SO4)2·xH2O in Process 1,experiments were carried out under various Na2SO4 concentrations(0.4–2.5 mol/L),sulfuric acid concentrations(6–14 mol/L),and reaction temperatures(95–125 oC).In addition,the effect of the pH value on the separation of Ce(OH)4 in HCl-H2 O solutions with Ce(OH)4,La-,Pr-,and Nd(OH)3 in Process 4 was also investigated.On the basis of above results,the possibility of effective separation of REEs from REPPWs could be confirmed.
文摘1. Foreword Energy storage plays a key role in the transition towards a carbon-neutral economy. By balancing power grids and saving surplus energy, it represents a concrete means of improving energy efficiency and integrating more renewable energy sources into electricity systems. A variety of technologies to store energy are developing at a fast pace and increasingly becomingmoremarketcompetitive,includingtraditional electric energy storage, thermal energy storage, and newly developed hydrogen energy storage, etc. The demand for energy storage system with high power and efficiency boosts the development in the advanced techniques and materials,such as batteries, super-capacitors, molten salts, and catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER).
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.
基金supported by the National Research Foundation (NRF)grants funded by the Ministry of Education (2020R1A6A1A03038817),Republic of Korea。
文摘Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金Ministry of Trade,Industry and Energy,Grant/Award Number:20010095Korea Evaluation Institute of Industrial Technology,Grant/Award Number:20012341。
文摘Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(NRF-2020R1A6A1A03043435,NRF-2023R1A2C2003210,and NRF-2022M3H4A1A04096478)by Technology Innovation Program(Alchemist Project,20012196,Al based supercritical materials discovery)funded by the Ministry of Trade,Industry&Energy,Korea.support from the“Bundesministerium fur Bildung und Forschung”(BMBF)and the computing time granted through JARA-HPC on the supercomputer JURECA at Forschungszentrum Julich.
文摘This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A2C1014280)supported by the “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004)+1 种基金the Fundamental Research Program of the Korea Institute of Material Science (KIMS) (PNK9370)the calculation resources were supported by the Supercomputing Center in Korea Institute of Science and Technology Information (KISTI) (KSC-2022-CRE-0030)。
文摘The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.
基金financial assistance from the SERB Core Research Grant(Grant No.CRG/2022/000897)Department of Science and Technology(DST/NM/NT/2019/205(G))+1 种基金Minor Research Project Grant,Jain University(JU/MRP/CNMS/29/2023)CSR acknowledges National Research Foundation of Korea for the Brain Pool program funded by the Ministry of Science and ICT,South Korea(Grant No.RS-2023-00222186).
文摘The Janus MoSSe and alloy MoS_(x)Se_((1-x)),belonging to the family of two-dimensional(2D)transition metal dichalcogenides(TMDs),have gained significant attention for their potential applications in nanotechnology.The unique asymmetric structure of Janus MoSSe provides intriguing possibilities for tailored applications.The alloy MoS_(x)Se_((1-x))offers a tunable composition,allowing for the fine-tuning of the properties to meet specific requirements.These materials exhibit remarkable mechanical,electrical,and optical properties,including a tunable band gap,high absorption coefficient,and photoconductivity.The vibrational and magnetic properties also make it a promising candidate for nanoscale sensing and magnetic storage applications.Properties of these materials can be precisely controlled through different approaches such as size-dependent properties,phase engineering,doping,alloying,defect and vacancy engineering,intercalation,morphology,and heterojunction or hybridisation.Various synthesis methods for 2D Janus MoSSe and alloy MoS_(x)Se_((1-x))are discussed,including hydro/solvothermal,chemical vapour transport,chemical vapour deposition,physical vapour depositio,and other approaches.The review also presents the latest advancements in Janus and alloy MoSSe-based applications,such as chemical and gas sensors,surface-enhanced Raman spectroscopy,field emission,and energy storage.Moreover,the review highlights the challenges and future directions in the research of these materials,including the need for improved synthesis methods,understanding of their stability,and exploration of new applications.Despite the early stages of research,both the MoSSe-based materials have shown significant potential in various fields,and this review provides valuable insights for researchers and engineers interested in exploring its potential.
基金National Research Foundation,Grant/Award Numbers:NRF‐2018R1A5A1025594,NRF‐2022M3J1A1062644。
文摘The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.
文摘Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.
文摘With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.