We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed b...We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.展开更多
Well-Migned Zn1-xMnxO nanorods have been synthesized successfully on bare silicon substrates by a simple evaporation method without using any catalyst. X-ray diffraction and electron microscopy studies demonstrate tha...Well-Migned Zn1-xMnxO nanorods have been synthesized successfully on bare silicon substrates by a simple evaporation method without using any catalyst. X-ray diffraction and electron microscopy studies demonstrate that the as-grown nanorods are of single wurtzite phase with a preferential growth direction along their c- axes, Quantitative energy-dispersive spectrum analysis reveals that the concentration of manganese is around 4 at,%, Magnetic measurements show the single-phase Zn1-xMnxO nanorod arrays exhibiting the paramagnetic behaviour. Photolumlnescence spectra demonstrate that the Zn1-xMnxO nanorods preserve ultraviolet emission at room temperature.展开更多
基金supported by a research program through the National Research Foundation of Korea (NRF),funded by MSIT and MEST (NRF-2018R1A5A1025594,NRF-2021R1A4A1022198,and 2022R1A2B5B01001943)。
文摘We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.
基金Supported by the National Natural Science Foundation of China under Grant No 50502005, and Beijing Natural Science Foundation under Grant No 1062008.
文摘Well-Migned Zn1-xMnxO nanorods have been synthesized successfully on bare silicon substrates by a simple evaporation method without using any catalyst. X-ray diffraction and electron microscopy studies demonstrate that the as-grown nanorods are of single wurtzite phase with a preferential growth direction along their c- axes, Quantitative energy-dispersive spectrum analysis reveals that the concentration of manganese is around 4 at,%, Magnetic measurements show the single-phase Zn1-xMnxO nanorod arrays exhibiting the paramagnetic behaviour. Photolumlnescence spectra demonstrate that the Zn1-xMnxO nanorods preserve ultraviolet emission at room temperature.