Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,an...Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,and two-dimensional(2D)materials,crystal silicon continues to maintain its stronghold,owing to its superior functionality,scalability,stability,reliability,and uniformity.Nonetheless,the inherent rigidity of the bulk silicon leads to incompatibility with soft tissues,hindering the utilization amid biomedical applications.Because of such issues,decades of research have enabled successful utilization of various techniques to precisely control the thickness and morphology of silicon layers at the scale of several nanometres.This review provides a comprehensive exploration on the features of ultra-thin single crystalline silicon as a semiconducting material,and its role especially among the frontier of advanced bioelectronics.Key processes that enable the transition of rigid silicon to flexible form factors are exhibited,in accordance with their chronological sequence.The inspected stages span both prior and subsequent to transferring the silicon membrane,categorized respectively as on-wafer manufacturing and rigid-to-soft integration.Extensive guidelines to unlock the full potential of flexible electronics are provided through ordered analysis of each manufacturing procedure,the latest findings of biomedical applications,along with practical perspectives for researchers and manufacturers.展开更多
BACKGROUND:Sepsis is one of the main causes of mortality in intensive care units(ICUs).Early prediction is critical for reducing injury.As approximately 36%of sepsis occur within 24 h after emergency department(ED)adm...BACKGROUND:Sepsis is one of the main causes of mortality in intensive care units(ICUs).Early prediction is critical for reducing injury.As approximately 36%of sepsis occur within 24 h after emergency department(ED)admission in Medical Information Mart for Intensive Care(MIMIC-IV),a prediction system for the ED triage stage would be helpful.Previous methods such as the quick Sequential Organ Failure Assessment(qSOFA)are more suitable for screening than for prediction in the ED,and we aimed to fi nd a light-weight,convenient prediction method through machine learning.METHODS:We accessed the MIMIC-IV for sepsis patient data in the EDs.Our dataset comprised demographic information,vital signs,and synthetic features.Extreme Gradient Boosting(XGBoost)was used to predict the risk of developing sepsis within 24 h after ED admission.Additionally,SHapley Additive exPlanations(SHAP)was employed to provide a comprehensive interpretation of the model's results.Ten percent of the patients were randomly selected as the testing set,while the remaining patients were used for training with 10-fold cross-validation.RESULTS:For 10-fold cross-validation on 14,957 samples,we reached an accuracy of 84.1%±0.3%and an area under the receiver operating characteristic(ROC)curve of 0.92±0.02.The model achieved similar performance on the testing set of 1,662 patients.SHAP values showed that the fi ve most important features were acuity,arrival transportation,age,shock index,and respiratory rate.CONCLUSION:Machine learning models such as XGBoost may be used for sepsis prediction using only a small amount of data conveniently collected in the ED triage stage.This may help reduce workload in the ED and warn medical workers against the risk of sepsis in advance.展开更多
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa...Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.展开更多
Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A...Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A crucial problem in XLarray communications is to determine the boundary of applicable regions of the plane wave model(PWM)and spherical wave model(SWM).In this paper,we propose new PWM/SWM demarcations for XL-arrays from the viewpoint of channel gain and rank.Four sets of results are derived for four different array setups.First,an equi-power line is derived for a point-touniform linear array(ULA)scenario,where an inflection point is found at±π6 central incident angles.Second,an equi-power surface is derived for a point-touniform planar array(UPA)scenario,and it is proved that cos2(ϕ)cos2(φ)=12 is a dividing curve,where ϕ andφdenote the elevation and azimuth angles,respectively.Third,an accurate and explicit expression of the equi-rank surface is obtained for a ULA-to-ULA scenario.Finally,an approximated expression of the equirank surface is obtained for a ULA-to-UPA scenario.With the obtained closed-form expressions,the equirank surface for any antenna structure and any angle can be well estimated.Furthermore,the effect of scatterers is also investigated,from which some insights are drawn.展开更多
To address the significant degradation of Space-Time Adaptive Processing(STAP)performance when the array elements have mutual coupling and gain/phase errors,a STAP algorithm with adaptive calibration for the above two...To address the significant degradation of Space-Time Adaptive Processing(STAP)performance when the array elements have mutual coupling and gain/phase errors,a STAP algorithm with adaptive calibration for the above two array errors is proposed in this article.First,based on a defined error matrix that simultaneously considers both array mutual coupling and gain/phase errors,a STAP signal model including these errors is given.Then,utilizing the defined signal model,it is demonstrated that the estimation of the defined error matrix can be formulized as a standard convex optimization problem with the low-rank structure of the clutter covariance matrix and the subspace projection theory.Once the defined error matrix is estimated by solving the convex optimization problem,it is illustrated that a STAP method with adaptive calibration of the mutual coupling and gain/phase errors is coined.Analyses also show that the proposed adaptive calibration algorithm only needs one training sample to construct the adaptive weight vector.Therefore,it can achieve a good detection performance even with severe non-homogeneous clutter environments.Finally,the simulation experiments verify the effectiveness of the proposed algorithm and the correctness of the analytical results.展开更多
Advanced OER/HER electrocatalytic alternatives are crucial for the wide adaptation of green hydrogen energy.Herein,Ru/NiMnB spherical cluster pillar(SCP),denoted as Ru/NiMnB,is synthesized using a combination of elect...Advanced OER/HER electrocatalytic alternatives are crucial for the wide adaptation of green hydrogen energy.Herein,Ru/NiMnB spherical cluster pillar(SCP),denoted as Ru/NiMnB,is synthesized using a combination of electro-deposition and hydrothermal reaction.Systematic investigation of Ru doping in the NiMnB matrix revealed significant improvements in electrocatalytic performance.The Ru/NiMnB SCPs demonstrate superior OER/HER activity with low overpotentials of 150 and 103 mV at 50mA/cm^(2)in 1 M KOH,making them highly competitive with state-of-the-art electrocatalysts.Remarkably,the Ru/NiMnB SCPs exhibit a low 2-E cell voltage of 2.80 V at ultra-high current density of 2,000 m A/cm^(2)in 1 M KOH,outperforming the standard benchmark electrodes of RuO_(2)||Pt/C,thereby positioning Ru/NiMnB as one of the best bifunctional electrocatalysts.These SCPs exhibit exceptional high-current characteristics,stability and corrosion resistance,as evidenced by continuous operation at 1,000 mA/cm^(2)high-current density for over 150 h in 6 M KOH at elevated temperatures under harsh industrial conditions.Only a small amount of Ru incorporation significantly enhances the electrocatalytic performances of NiMnB,attributed to increased active sites and improved intrinsic properties such as conductivity,adsorption/desorption capability and reaction rates.Consequently,Ru/NiMnB SCPs present a promising bi-functional electrode concept for efficient green H_(2)production.展开更多
Physical layer security is an important method to improve the secrecy performance of wireless communication systems.In this paper,we analyze the effect of employing channel correlation to improve security performance ...Physical layer security is an important method to improve the secrecy performance of wireless communication systems.In this paper,we analyze the effect of employing channel correlation to improve security performance in multiple-input multipleoutput(MIMO)scenario with antenna selection(AS)scheme.We first derive the analytical expressions of average secrecy capacity(ASC)and secrecy outage probability(SOP)by the first order Marcum Q function.Then,the asymptotic expressions of ASC and SOP in two specific scenarios are further derived.The correctness of analytical and asymptotic expressions is verified by Monte Carlo simulations.The conclusions suggest that the analytical expressions of ASC and SOP are related to the product of transmitting and receiving antennas;increasing the number of antennas is beneficial to ASC and SOP.Besides,when the target rate is set at a low level,strong channel correlation is bad for ASC,but is beneficial to SOP.展开更多
A new class of phosphor samples,denoted as Ba_(1-x)Al_(2)Ge_(2)O_(8):xEu^(2+)(BAGO:xEu^(2+))was synthesized using a Pechini-type sol-gel technique and subsequent thermal reduction in CO atmosphere.The morphology and s...A new class of phosphor samples,denoted as Ba_(1-x)Al_(2)Ge_(2)O_(8):xEu^(2+)(BAGO:xEu^(2+))was synthesized using a Pechini-type sol-gel technique and subsequent thermal reduction in CO atmosphere.The morphology and structural characteristics of both the BAGO host lattice and the Eu^(2+)ions activated BAGO phosphors were investigated through field-emission scanning electron microscopy and X-ray diffractometry analyses,respectively.The BAGO host lattice has micro-sized particles and the Rietveld refinement reveals the presence of a monoclinic crystal phase,characterized by the space group I2/c(No.15).Introducing Eu^(2+)ions into Ba^(2+)sites under CO condition reduces the particle size,switching from microscale to nanoscale.Within the near-ultraviolet spectrum(353 nm),the BAGO:xEu^(2+)phosphors exhibit a broadband bluish-green photoluminescence(PL)emission characterized by a peak band at 492 nm.This phenomenon is attributed to the 4f^(6)5d^(1)→4f^(7) electronic transition.The BAGO:0.02Eu^(2+)phosphor shows the strongest bluish-green PL emission,and a co mprehensive description of the concentration quenching mechanism between Eu^(2+)ions is revealed.Additionally,the thermal stability of the optimized BAGO:0.02Eu^(2+)phosphor was investigated,and its activation energy was estimated.Therefore,the synthesized bluish-green BAGO:0.02Eu^(2+)phosphor holds the promise of being a novel and potential candidate for utilization in white light-emitting diode applications.展开更多
Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has dec...Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has declined by 2%of the total over the past 50 a,and the tropical Pacific Ocean occupied the largest oxygen minimum zone(OMZ)areas.However,the sparse observation data is limited to understanding the dynamic variation and trend of ocean using traditional interpolation methods.In this study,we applied different machine learning algorithms to fit regression models between measured DO,ocean reanalysis physical variables,and spatiotemporal variables.We demonstrate that extreme gradient boosting(XGBoost)model has the best performance,hereby reconstructing a four-dimensional DO dataset of the tropical Pacific Ocean from 1920 to 2023.The results reveal that XGBoost significantly improves the reconstruction performance in the tropical Pacific Ocean,with a 35.3%reduction in root mean-squared error and a 39.5%decrease in mean absolute error.Additionally,we compare the results with three Coupled Model Intercomparison Project Phase 6(CMIP6)models data to confirm the high accuracy of the 4-dimensional reconstruction.Overall,the OMZ mainly dominates the eastern tropical Pacific Ocean,with a slow expansion.This study used XGBoost to efficiently reconstructing 4-dimensional DO enhancing the understanding of the hypoxic expansion in the tropical Pacific Ocean and we foresee that this approach would be extended to reconstruct more ocean elements.展开更多
In offshore maritime communication sys-tems,base stations(BSs)are employed along the coastline to provide high-speed data service for ves-sels in coastal sea areas.To ensure the line-of-sight propagation of BS-vessel ...In offshore maritime communication sys-tems,base stations(BSs)are employed along the coastline to provide high-speed data service for ves-sels in coastal sea areas.To ensure the line-of-sight propagation of BS-vessel links,high transceiver an-tenna height is required,which limits the number of geographically available sites for BS deployment,and imposes a high cost for realizing effective wide-area coverage.In this paper,the joint user association and power allocation(JUAPA)problem is investigated to enhance the coverage of offshore maritime systems.By exploiting the characteristics of network topology as well as vessels’motion in offshore communica-tions,a multi-period JUAPA problem is formulated to maximize the number of ships that can be simultane-ously served by the network.This JUAPA problem is intrinsically non-convex and subject to mixed-integer constraints,which is difficult to solve either analyt-ically or numerically.Hence,we propose an iterative augmentation based framework to efficiently select the active vessels,where the JUAPA scheme is iteratively optimized by the network for increasing the number of the selected vessels.More specifically,in each itera-tion,the user association variables and power alloca-tion variables are determined by solving two separate subproblems,so that the JUAPA strategy can be up-dated in a low-complexity manner.The performance of the proposed JUAPA method is evaluated by exten-sive simulation,and numerical results indicate that it can effectively increase the number of vessels served by the network,and thus enhances the coverage of off-shore systems.展开更多
Complex-valued double-sideband direct detection(DD)can reconstruct the optical field and achieve a high electrical spectral efficiency(ESE)comparable to that of a coherent homodyne receiver,and DD does not require a c...Complex-valued double-sideband direct detection(DD)can reconstruct the optical field and achieve a high electrical spectral efficiency(ESE)comparable to that of a coherent homodyne receiver,and DD does not require a costly local oscillator laser.However,a fundamental question remains if there is an optimal DD receiver structure with the simplest design to approach the performance of the coherent homodyne detection.This study derives the optimal DD receiver structure with an optimal transfer function to recover a quadrature amplitude modulation(QAM)signal with a near-zero guard band at the central frequency of the signal.We derive the theoretical ESE limit for various detection schemes by invoking Shannon’s formula.Our proposed scheme is closest to coherent homodyne detection in terms of the theoretical ESE limit.By leveraging a WaveShaper to construct the optimal transfer function,we conduct a proof-of-concept experiment to transmit a net 228.85-Gb/s 64-QAM signal over an 80-km single-mode fiber with a net ESE of 8.76 b/s/Hz.To the best of our knowledge,this study reports the highest net ESE per polarization per wavelength for DD transmission beyond 40-km single-mode fiber.For a comprehensive metric,denoted as 2ESE×Reach,we achieve the highest 2ESE×Reach per polarization per wavelength for DD transmission.展开更多
We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially...We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.展开更多
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand...Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.展开更多
In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different ph...In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different phase profiles,can be transformed into each other.In principle,the LP and OAM modes have a different mode spatial intensity distribution and a gain difference for FM-EDF amplifiers.How to analyze and characterize the differential mode-bases gain(DMBG)is important,but still an issue.We build,for the first time to our knowledge,a local analysis model composed of discrete elements of the FM-EDF cross section in areas of mode spatial intensity distribution azimuthal variation.Using the model of the two mode bases,analysis of local particle number distribution and detailed description of the local gain difference are realized,and the overall gain difference between the two mode bases is obtained.By building an amplifier system based on mode phase profile controlling,the gain of two mode bases is characterized experimentally.The measured DMBG is∼0.8 dB in the second-order mode,which is consistent with the simulation result.This result provides a potential way to reduce the mode gain difference in the FM-EDF,which is important in improving the performance of the SDM communication system.展开更多
As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expo...As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.展开更多
Optical phased arrays(OPAs)are crucial in beam-steering applications,particularly as transmitters in light detection and ranging and free-space communication systems.In this paper,we demonstrate a on-chip OPA that emi...Optical phased arrays(OPAs)are crucial in beam-steering applications,particularly as transmitters in light detection and ranging and free-space communication systems.In this paper,we demonstrate a on-chip OPA that emits multiple orbital angular momentum(OAM)beams in different directions,each carrying unique topological charges.By superimposing a forked 1×3 Dammann grating on the grating array,six OAM beams with topological charges of ±3,±4,and±5 can be radiated from the OPA region.The OPA chip was fabricated on a silicon-on-insulator platform,and the simultaneous generation of multiple OAM beams was realized experimentally.The directions of these vortices can be steered by adjusting the wavelength of the input light and the bias voltages of the phase shifters,enabling a remarkable field of view(FOV)of 140 deg×40 deg within a 120-nm wavelength range.We pave the way for developing systems with ultrawide FOVs,improving the resolution of remote sensing and broadening the possibilities of free-space communications.展开更多
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ...Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals.展开更多
The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperat...The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperature. A large IPOA related to defect or impurity states is observed. The IPOA of samples grown on MoS_(2)/Mo is approximately one order of magnitude larger than that of samples grown on Ti/Mo substrates. Numerical calculations based on the envelope function approximation have been performed to analyze the origin of the IPOA. It is found that the IPOA primarily results from the segregation of indium atoms in the In Ga N/Ga N Qdisks. This work highlights the significant influence of substrate materials on the IPOA of semiconductor heterostructures.展开更多
Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the l...Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.展开更多
Recent advances in all-inorganic perovskite semiconductors have garnered significant research interest due to their potential for high-performance optoelectronic devices and enhanced stability under harsh environmenta...Recent advances in all-inorganic perovskite semiconductors have garnered significant research interest due to their potential for high-performance optoelectronic devices and enhanced stability under harsh environmental conditions.A deeper understanding of their structural,chemical,and physical properties has driven notable progress in addressing challenges related to electrical characteristics,reproducibility,and long-term operational stability in perovskite-based memristors.These advancements have been realized through composition engineering,dimensionality modulation,thin-film processing,and device optimization.This review concisely summarizes recent developments in all-inorganic perovskite memristors,highlighting their diverse material properties,device performance,and applications in artificial synapses and logic operations.We discuss key resistance-switching mechanisms,optimization strategies,and operational capabilities while outlining remaining challenges and future directions for perovskitebased memory technologies.展开更多
基金support received from National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT)(RS-2024-00353768)the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT)(RS-2025-02217919)+1 种基金funded by the Yonsei Fellowshipfunded by Lee Youn Jae and the KIST Institutional Program Project No.2E31603-22-140 (KJY).
文摘Ultra-thin crystalline silicon stands as a cornerstone material in the foundation of modern micro and nano electronics.Despite the proliferation of various materials including oxide-based,polymer-based,carbon-based,and two-dimensional(2D)materials,crystal silicon continues to maintain its stronghold,owing to its superior functionality,scalability,stability,reliability,and uniformity.Nonetheless,the inherent rigidity of the bulk silicon leads to incompatibility with soft tissues,hindering the utilization amid biomedical applications.Because of such issues,decades of research have enabled successful utilization of various techniques to precisely control the thickness and morphology of silicon layers at the scale of several nanometres.This review provides a comprehensive exploration on the features of ultra-thin single crystalline silicon as a semiconducting material,and its role especially among the frontier of advanced bioelectronics.Key processes that enable the transition of rigid silicon to flexible form factors are exhibited,in accordance with their chronological sequence.The inspected stages span both prior and subsequent to transferring the silicon membrane,categorized respectively as on-wafer manufacturing and rigid-to-soft integration.Extensive guidelines to unlock the full potential of flexible electronics are provided through ordered analysis of each manufacturing procedure,the latest findings of biomedical applications,along with practical perspectives for researchers and manufacturers.
基金supported by the National Key Research and Development Program of China(2021YFC2500803)the CAMS Innovation Fund for Medical Sciences(2021-I2M-1-056).
文摘BACKGROUND:Sepsis is one of the main causes of mortality in intensive care units(ICUs).Early prediction is critical for reducing injury.As approximately 36%of sepsis occur within 24 h after emergency department(ED)admission in Medical Information Mart for Intensive Care(MIMIC-IV),a prediction system for the ED triage stage would be helpful.Previous methods such as the quick Sequential Organ Failure Assessment(qSOFA)are more suitable for screening than for prediction in the ED,and we aimed to fi nd a light-weight,convenient prediction method through machine learning.METHODS:We accessed the MIMIC-IV for sepsis patient data in the EDs.Our dataset comprised demographic information,vital signs,and synthetic features.Extreme Gradient Boosting(XGBoost)was used to predict the risk of developing sepsis within 24 h after ED admission.Additionally,SHapley Additive exPlanations(SHAP)was employed to provide a comprehensive interpretation of the model's results.Ten percent of the patients were randomly selected as the testing set,while the remaining patients were used for training with 10-fold cross-validation.RESULTS:For 10-fold cross-validation on 14,957 samples,we reached an accuracy of 84.1%±0.3%and an area under the receiver operating characteristic(ROC)curve of 0.92±0.02.The model achieved similar performance on the testing set of 1,662 patients.SHAP values showed that the fi ve most important features were acuity,arrival transportation,age,shock index,and respiratory rate.CONCLUSION:Machine learning models such as XGBoost may be used for sepsis prediction using only a small amount of data conveniently collected in the ED triage stage.This may help reduce workload in the ED and warn medical workers against the risk of sepsis in advance.
基金the financial support from the National Key Research and Development Program of China(No.2023YFB3907001)the National Natural Science Foundation of China(Nos.U2233217,62371029)the UK Engineering and Physical Sciences Research Council(EPSRC),China(Nos.EP/M026981/1,EP/T021063/1 and EP/T024917/)。
文摘Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62271310 and 62125108in part by the Fundamental Research Funds for the Central Universities of Chinain part by the NSFC under Grant 62431014
文摘Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A crucial problem in XLarray communications is to determine the boundary of applicable regions of the plane wave model(PWM)and spherical wave model(SWM).In this paper,we propose new PWM/SWM demarcations for XL-arrays from the viewpoint of channel gain and rank.Four sets of results are derived for four different array setups.First,an equi-power line is derived for a point-touniform linear array(ULA)scenario,where an inflection point is found at±π6 central incident angles.Second,an equi-power surface is derived for a point-touniform planar array(UPA)scenario,and it is proved that cos2(ϕ)cos2(φ)=12 is a dividing curve,where ϕ andφdenote the elevation and azimuth angles,respectively.Third,an accurate and explicit expression of the equi-rank surface is obtained for a ULA-to-ULA scenario.Finally,an approximated expression of the equirank surface is obtained for a ULA-to-UPA scenario.With the obtained closed-form expressions,the equirank surface for any antenna structure and any angle can be well estimated.Furthermore,the effect of scatterers is also investigated,from which some insights are drawn.
基金co-supported by the National Natural Science Foundation of China(No.12374431)。
文摘To address the significant degradation of Space-Time Adaptive Processing(STAP)performance when the array elements have mutual coupling and gain/phase errors,a STAP algorithm with adaptive calibration for the above two array errors is proposed in this article.First,based on a defined error matrix that simultaneously considers both array mutual coupling and gain/phase errors,a STAP signal model including these errors is given.Then,utilizing the defined signal model,it is demonstrated that the estimation of the defined error matrix can be formulized as a standard convex optimization problem with the low-rank structure of the clutter covariance matrix and the subspace projection theory.Once the defined error matrix is estimated by solving the convex optimization problem,it is illustrated that a STAP method with adaptive calibration of the mutual coupling and gain/phase errors is coined.Analyses also show that the proposed adaptive calibration algorithm only needs one training sample to construct the adaptive weight vector.Therefore,it can achieve a good detection performance even with severe non-homogeneous clutter environments.Finally,the simulation experiments verify the effectiveness of the proposed algorithm and the correctness of the analytical results.
基金Core Research Institute Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025242)in part by the research grant of Kwangwoon University in 2024。
文摘Advanced OER/HER electrocatalytic alternatives are crucial for the wide adaptation of green hydrogen energy.Herein,Ru/NiMnB spherical cluster pillar(SCP),denoted as Ru/NiMnB,is synthesized using a combination of electro-deposition and hydrothermal reaction.Systematic investigation of Ru doping in the NiMnB matrix revealed significant improvements in electrocatalytic performance.The Ru/NiMnB SCPs demonstrate superior OER/HER activity with low overpotentials of 150 and 103 mV at 50mA/cm^(2)in 1 M KOH,making them highly competitive with state-of-the-art electrocatalysts.Remarkably,the Ru/NiMnB SCPs exhibit a low 2-E cell voltage of 2.80 V at ultra-high current density of 2,000 m A/cm^(2)in 1 M KOH,outperforming the standard benchmark electrodes of RuO_(2)||Pt/C,thereby positioning Ru/NiMnB as one of the best bifunctional electrocatalysts.These SCPs exhibit exceptional high-current characteristics,stability and corrosion resistance,as evidenced by continuous operation at 1,000 mA/cm^(2)high-current density for over 150 h in 6 M KOH at elevated temperatures under harsh industrial conditions.Only a small amount of Ru incorporation significantly enhances the electrocatalytic performances of NiMnB,attributed to increased active sites and improved intrinsic properties such as conductivity,adsorption/desorption capability and reaction rates.Consequently,Ru/NiMnB SCPs present a promising bi-functional electrode concept for efficient green H_(2)production.
基金supported in part by the National Natural Science Foundation of China under Grants NO.61971161 and 62171151in part by the Foundation of Heilongjiang Touyan Team under Grant NO.HITTY-20190009+3 种基金and in part by the Fundamental Research Funds for the Central Universities under Grant NO.HIT.OCEF.2021012supported in part by the Natural Science Foundation of China under Grant NO.62171160in part by the Fundamental Research Funds for the Central Universities under Grant NO.HIT.OCEF.2022055in part by the Shenzhen Science and Technology Program under Grants NO.JCYJ20190806143212658 and ZDSYS20210623091808025.
文摘Physical layer security is an important method to improve the secrecy performance of wireless communication systems.In this paper,we analyze the effect of employing channel correlation to improve security performance in multiple-input multipleoutput(MIMO)scenario with antenna selection(AS)scheme.We first derive the analytical expressions of average secrecy capacity(ASC)and secrecy outage probability(SOP)by the first order Marcum Q function.Then,the asymptotic expressions of ASC and SOP in two specific scenarios are further derived.The correctness of analytical and asymptotic expressions is verified by Monte Carlo simulations.The conclusions suggest that the analytical expressions of ASC and SOP are related to the product of transmitting and receiving antennas;increasing the number of antennas is beneficial to ASC and SOP.Besides,when the target rate is set at a low level,strong channel correlation is bad for ASC,but is beneficial to SOP.
基金Project supported by the National Research Foundation of Korea Grant funded by the Korean government(MSIP)(2018R1A6A1A03025708)。
文摘A new class of phosphor samples,denoted as Ba_(1-x)Al_(2)Ge_(2)O_(8):xEu^(2+)(BAGO:xEu^(2+))was synthesized using a Pechini-type sol-gel technique and subsequent thermal reduction in CO atmosphere.The morphology and structural characteristics of both the BAGO host lattice and the Eu^(2+)ions activated BAGO phosphors were investigated through field-emission scanning electron microscopy and X-ray diffractometry analyses,respectively.The BAGO host lattice has micro-sized particles and the Rietveld refinement reveals the presence of a monoclinic crystal phase,characterized by the space group I2/c(No.15).Introducing Eu^(2+)ions into Ba^(2+)sites under CO condition reduces the particle size,switching from microscale to nanoscale.Within the near-ultraviolet spectrum(353 nm),the BAGO:xEu^(2+)phosphors exhibit a broadband bluish-green photoluminescence(PL)emission characterized by a peak band at 492 nm.This phenomenon is attributed to the 4f^(6)5d^(1)→4f^(7) electronic transition.The BAGO:0.02Eu^(2+)phosphor shows the strongest bluish-green PL emission,and a co mprehensive description of the concentration quenching mechanism between Eu^(2+)ions is revealed.Additionally,the thermal stability of the optimized BAGO:0.02Eu^(2+)phosphor was investigated,and its activation energy was estimated.Therefore,the synthesized bluish-green BAGO:0.02Eu^(2+)phosphor holds the promise of being a novel and potential candidate for utilization in white light-emitting diode applications.
基金The National Natural Science Foundation of China under contract Nos T2421002, 623B2071,and 42125601the National Key R&D Program of China under contract No. 2023YFF0805300
文摘Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has declined by 2%of the total over the past 50 a,and the tropical Pacific Ocean occupied the largest oxygen minimum zone(OMZ)areas.However,the sparse observation data is limited to understanding the dynamic variation and trend of ocean using traditional interpolation methods.In this study,we applied different machine learning algorithms to fit regression models between measured DO,ocean reanalysis physical variables,and spatiotemporal variables.We demonstrate that extreme gradient boosting(XGBoost)model has the best performance,hereby reconstructing a four-dimensional DO dataset of the tropical Pacific Ocean from 1920 to 2023.The results reveal that XGBoost significantly improves the reconstruction performance in the tropical Pacific Ocean,with a 35.3%reduction in root mean-squared error and a 39.5%decrease in mean absolute error.Additionally,we compare the results with three Coupled Model Intercomparison Project Phase 6(CMIP6)models data to confirm the high accuracy of the 4-dimensional reconstruction.Overall,the OMZ mainly dominates the eastern tropical Pacific Ocean,with a slow expansion.This study used XGBoost to efficiently reconstructing 4-dimensional DO enhancing the understanding of the hypoxic expansion in the tropical Pacific Ocean and we foresee that this approach would be extended to reconstruct more ocean elements.
基金supported by the National Key Research and Development Program of China under Grant 2018YFA0701601by the Program of Jiangsu Province under Grant NTACT-2024-Z-001.
文摘In offshore maritime communication sys-tems,base stations(BSs)are employed along the coastline to provide high-speed data service for ves-sels in coastal sea areas.To ensure the line-of-sight propagation of BS-vessel links,high transceiver an-tenna height is required,which limits the number of geographically available sites for BS deployment,and imposes a high cost for realizing effective wide-area coverage.In this paper,the joint user association and power allocation(JUAPA)problem is investigated to enhance the coverage of offshore maritime systems.By exploiting the characteristics of network topology as well as vessels’motion in offshore communica-tions,a multi-period JUAPA problem is formulated to maximize the number of ships that can be simultane-ously served by the network.This JUAPA problem is intrinsically non-convex and subject to mixed-integer constraints,which is difficult to solve either analyt-ically or numerically.Hence,we propose an iterative augmentation based framework to efficiently select the active vessels,where the JUAPA scheme is iteratively optimized by the network for increasing the number of the selected vessels.More specifically,in each itera-tion,the user association variables and power alloca-tion variables are determined by solving two separate subproblems,so that the JUAPA strategy can be up-dated in a low-complexity manner.The performance of the proposed JUAPA method is evaluated by exten-sive simulation,and numerical results indicate that it can effectively increase the number of vessels served by the network,and thus enhances the coverage of off-shore systems.
基金supported by the National Natural Science Foundation of China(62341508).
文摘Complex-valued double-sideband direct detection(DD)can reconstruct the optical field and achieve a high electrical spectral efficiency(ESE)comparable to that of a coherent homodyne receiver,and DD does not require a costly local oscillator laser.However,a fundamental question remains if there is an optimal DD receiver structure with the simplest design to approach the performance of the coherent homodyne detection.This study derives the optimal DD receiver structure with an optimal transfer function to recover a quadrature amplitude modulation(QAM)signal with a near-zero guard band at the central frequency of the signal.We derive the theoretical ESE limit for various detection schemes by invoking Shannon’s formula.Our proposed scheme is closest to coherent homodyne detection in terms of the theoretical ESE limit.By leveraging a WaveShaper to construct the optimal transfer function,we conduct a proof-of-concept experiment to transmit a net 228.85-Gb/s 64-QAM signal over an 80-km single-mode fiber with a net ESE of 8.76 b/s/Hz.To the best of our knowledge,this study reports the highest net ESE per polarization per wavelength for DD transmission beyond 40-km single-mode fiber.For a comprehensive metric,denoted as 2ESE×Reach,we achieve the highest 2ESE×Reach per polarization per wavelength for DD transmission.
基金supported by the National Natural Science Foundation of China(Grant Nos.62061028 and 62461035)the Key Project of Natural Science Foundation of Jiangxi Province(Grant No.20232ACB202003)+2 种基金the Finance Science and Technology Special“contract system”Project of Nanchang University Jiangxi Province(Grant No.ZBG20230418015)the Natural Science Foundation of Chongqing(Grant No.CSTB2024NSCQ-MSX0412)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.ammt2021A-4).
文摘We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University.
文摘Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0706300)the National Natural Science Foundation of China(Grant Nos.U22B2010,62035018,and U2001601)+1 种基金the Program of Marine Economy Development Special Fund(Six Marine Industries)under the Department of Natural Resources of Guangdong Province(Grant No.GDNRC[2024]16)the project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP231).
文摘In a few-mode erbium-doped fiber(FM-EDF),which is a key section in a space-division multiplexing(SDM)communication system,linearly polarized(LP)and orbital angular momentum(OAM)modes,as twomode bases with different phase profiles,can be transformed into each other.In principle,the LP and OAM modes have a different mode spatial intensity distribution and a gain difference for FM-EDF amplifiers.How to analyze and characterize the differential mode-bases gain(DMBG)is important,but still an issue.We build,for the first time to our knowledge,a local analysis model composed of discrete elements of the FM-EDF cross section in areas of mode spatial intensity distribution azimuthal variation.Using the model of the two mode bases,analysis of local particle number distribution and detailed description of the local gain difference are realized,and the overall gain difference between the two mode bases is obtained.By building an amplifier system based on mode phase profile controlling,the gain of two mode bases is characterized experimentally.The measured DMBG is∼0.8 dB in the second-order mode,which is consistent with the simulation result.This result provides a potential way to reduce the mode gain difference in the FM-EDF,which is important in improving the performance of the SDM communication system.
基金supported in part by the National Natural Science Foundation of China under Grant No.61701197in part by the National Key Research and Development Program of China under Grant No.2021YFA1000500(4)in part by the 111 project under Grant No.B23008.
文摘As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62341508 and 62105203)the Shanghai Municipal Science and Technology Major Project(Grant No.BH0300071).
文摘Optical phased arrays(OPAs)are crucial in beam-steering applications,particularly as transmitters in light detection and ranging and free-space communication systems.In this paper,we demonstrate a on-chip OPA that emits multiple orbital angular momentum(OAM)beams in different directions,each carrying unique topological charges.By superimposing a forked 1×3 Dammann grating on the grating array,six OAM beams with topological charges of ±3,±4,and±5 can be radiated from the OPA region.The OPA chip was fabricated on a silicon-on-insulator platform,and the simultaneous generation of multiple OAM beams was realized experimentally.The directions of these vortices can be steered by adjusting the wavelength of the input light and the bias voltages of the phase shifters,enabling a remarkable field of view(FOV)of 140 deg×40 deg within a 120-nm wavelength range.We pave the way for developing systems with ultrawide FOVs,improving the resolution of remote sensing and broadening the possibilities of free-space communications.
基金partially supported by MICIU MCIN/AEI/10.13039/501100011033Spain with grant PID2020-118265GB-C42,-C44,PRTR-C17.I01+1 种基金Generalitat Valenciana,Spain with grant CIPROM/2022/54,ASFAE/2022/031,CIAPOS/2021/114the EU NextGenerationEU,ESF funds,and the National Science Centre (NCN),Poland (grant No.2020/39/D/ST2/00466)
文摘Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62074036, 61674038, and 11574302)Foreign Cooperation Project of Fujian Province (Grant No. 2023I0005)+2 种基金Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202108)the National Key Research and Development Program (Grant No. 2016YFB0402303)the Foundation of Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075)。
文摘The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperature. A large IPOA related to defect or impurity states is observed. The IPOA of samples grown on MoS_(2)/Mo is approximately one order of magnitude larger than that of samples grown on Ti/Mo substrates. Numerical calculations based on the envelope function approximation have been performed to analyze the origin of the IPOA. It is found that the IPOA primarily results from the segregation of indium atoms in the In Ga N/Ga N Qdisks. This work highlights the significant influence of substrate materials on the IPOA of semiconductor heterostructures.
基金funded by Taif University,Saudi Arabia,Project No.(TU-DSPP-2024-52).
文摘Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.
基金supported by the JST SPRING Grant number JPMJSP2131funded by the Research Fellow Scheme from The Chinese University of Hong KongUniversiti Teknologi Malaysia AJ090000.6700.09453-Tabung Pembayaran Lantikan Skim Prominent Visiting Researcher Scheme JTNCPI。
文摘Recent advances in all-inorganic perovskite semiconductors have garnered significant research interest due to their potential for high-performance optoelectronic devices and enhanced stability under harsh environmental conditions.A deeper understanding of their structural,chemical,and physical properties has driven notable progress in addressing challenges related to electrical characteristics,reproducibility,and long-term operational stability in perovskite-based memristors.These advancements have been realized through composition engineering,dimensionality modulation,thin-film processing,and device optimization.This review concisely summarizes recent developments in all-inorganic perovskite memristors,highlighting their diverse material properties,device performance,and applications in artificial synapses and logic operations.We discuss key resistance-switching mechanisms,optimization strategies,and operational capabilities while outlining remaining challenges and future directions for perovskitebased memory technologies.