In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob...In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.展开更多
In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics ...In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics are utilized to adaptively estimate the deadzone parameter and a switching function is designed to eliminate the error produced in the adaptive observer dynamics. The overall design of the closed loop system ensures stability in the BIBO criterion.展开更多
Free-space optical (FSO) communication requires a line-of-sight connection between a transmitter and a receiver in which the information signal is modulated by an optical carrier that propagates in free space. The FSO...Free-space optical (FSO) communication requires a line-of-sight connection between a transmitter and a receiver in which the information signal is modulated by an optical carrier that propagates in free space. The FSO channel is greatly affected by weather conditions such as fog, rain, and snow. In the literature, several adaptive techniques, such as power control (PC), have been suggested to mitigate channel link degradations. In this paper, we investigate the effects of snow and rain attenuation on the bit error rate (BER) of the FSO system using two types of modulations, the on-off keying (OOK) modulation and the pulse-position modulation (16-PPM). The effect of PC on the performance of FSO communications is also examined in this study. We evaluated the system’s performance with two types of snow, wet snow and dry snow, as well as with different rain regions. Results show that PC improves the BER of the FSO system;a high rate of improvement is found for wet snow and rain. PC has almost no effect with dry snow because of the high attenuation and the limitations on transmitted power. The BER for 16-PPM is better than that for OOK modulation.展开更多
In this paper, a nonlinear robust adaptive controller is proposed for gear transmission servo system (GTS) containing a sandwiched deadzone due to improper gear meshing. The controller is robust to dynamic uncertainti...In this paper, a nonlinear robust adaptive controller is proposed for gear transmission servo system (GTS) containing a sandwiched deadzone due to improper gear meshing. The controller is robust to dynamic uncertainties and can compensate the effect caused by the sandwiched nonlinearity which is separated from the control input through drive compliance. The proposed design methodology does not require an adaptive inverse deadzone function and does not require the knowledge of its parameter and only the knowledge of upper bounds is required.展开更多
The research problem in this study is the longitudinal optical phonon energy on metal/semiconductor interface for high performance semiconductor device.The research solution is to make the software model with finite d...The research problem in this study is the longitudinal optical phonon energy on metal/semiconductor interface for high performance semiconductor device.The research solution is to make the software model with finite difference time domain(FDTD)solution for transmission and reflection pulse between metal and semiconductor interface for carrier dynamics effects.The objective of this study is to find the quantum mechanics understanding on interface engineering for fabricating the high performance device for future semiconductor technology development.The analysis was carried out with the help of MATLAB.The quantum mechanical spatial field on metal-semiconductor stripe structure has been analyzed by FDTD techniques.This emission reveals a characteristic polar radiation distribution of electric dipoles and a wavelength independent of the structure size or the direction of emission;consequently,it is attributed to thermally generate electric dipoles resonating with the longitudinal optical phonon energy.Phonon energy occurs lattice vibration of material by the polarization of light,if the material has rigid structure reflect back the incident light.So,high reflective metal-semiconductor structure always use as photodectors devices in optical fiber communication.No lattice vibration material structure has no phonon effect,so this structure based devices can get high performance any other structure based devices.The transmission and reflection coefficient of metal-semiconductor GaN/Au layer structure compare with GaN/Ti and GaN/Pt structure.Parallel(P)and transverse(S)polarization of light incident on a metal-semiconductor nanolayer structure with IR wavelength.Efficient use of the layer by layer(LbL)method to fabricate nanofilms requires meeting certain conditions and limitations that were revealed in the course of research on model systems.展开更多
This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum(OAM)waves with Mode+2 at 3.5 GHz(3.4 to 3.6 GHz)of the sub-6 GHz fifth-generation(5G)New Radio(NR)band.Th...This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum(OAM)waves with Mode+2 at 3.5 GHz(3.4 to 3.6 GHz)of the sub-6 GHz fifth-generation(5G)New Radio(NR)band.The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate.In contrast to previous works involving the use of rigid substrates to generate OAM waves,this work explored the use of flexible substrates to generate OAM waves for the first time.Other than that,the proposed antenna was simulated,analyzed,fabricated,and tested to confirm the generation of OAMMode+2.With the same design,OAM Mode−2 can be generated readily simply by mirror imaging the feed network.Note that the proposed antenna operated at the desired frequency of 3.5 GHz with an overall bandwidth of 400 MHz in free space.Moreover,mode purity analysis is carried out to verify the generation of OAM Mode+2,and the purity obtained was 41.78%at free space flat condition.Furthermore,the effect of antenna bending on the purity of the generated OAM mode is also investigated.Lastly,the influence of textile properties on OAM modes is examined to assist future researchers in choosing suitable fabrics to design flexible OAM-based antennas.After a comprehensive analysis considering different factors related to wearable applications,this paper demonstrates the feasibility of generating OAMwaves using textile antennas.Furthermore,as per the obtained Specific Absorption Rate(SAR),it is found that the proposed antenna is safe to be deployed.The findings of this work have a significant implication for body-centric communications.展开更多
Cooperative relaying for a system that consists of different configurations of a collocated and uniform linear antenna is analyzed. The amplify-and-forward relaying (AF) and selection combining (S-AF) schemes based on...Cooperative relaying for a system that consists of different configurations of a collocated and uniform linear antenna is analyzed. The amplify-and-forward relaying (AF) and selection combining (S-AF) schemes based on maximal ratio combining (MRC) method for single- and multi-relay are investigated. In this study, the bit-error-rate (BER) expression for collocated and uniform linear antenna in cooperative communication system over flat Rayleigh fading channel is derived. The result for 3-element collocated antennas (tripole) shows improvement in performance over dual-polarized antennas. Also increasing number of tripole antenna does not add improvement.展开更多
A quasi-exactly solvable model refers to any second order differential equation with polynomial coefficients of the form A(x)y’’(x)+B(x)y’(x)+C(x)y(x)=0 where a pair of exact polynomials {y(x), C(x)} with respectiv...A quasi-exactly solvable model refers to any second order differential equation with polynomial coefficients of the form A(x)y’’(x)+B(x)y’(x)+C(x)y(x)=0 where a pair of exact polynomials {y(x), C(x)} with respective degrees {deg[y]=n, deg[C]=p} are to be found simultaneously in terms of the coefficients of two given polynomials {A(x), B(x)}. The existing methods for solving quasi-exactly solvable models require the solution of a system of nonlinear algebraic equations of which the dimensions depend on n, the degree of the exact polynomial solution y(x). In this paper, a new method employing a set of polynomials, called canonical polynomials, is proposed. This method requires solving a system of nonlinear algebraic equations of which the dimensions depend only on p, the degree of C(x), and do not vary with n. Several examples are implemented to testify the efficiency of the proposed method.展开更多
文摘In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.
文摘In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics are utilized to adaptively estimate the deadzone parameter and a switching function is designed to eliminate the error produced in the adaptive observer dynamics. The overall design of the closed loop system ensures stability in the BIBO criterion.
文摘Free-space optical (FSO) communication requires a line-of-sight connection between a transmitter and a receiver in which the information signal is modulated by an optical carrier that propagates in free space. The FSO channel is greatly affected by weather conditions such as fog, rain, and snow. In the literature, several adaptive techniques, such as power control (PC), have been suggested to mitigate channel link degradations. In this paper, we investigate the effects of snow and rain attenuation on the bit error rate (BER) of the FSO system using two types of modulations, the on-off keying (OOK) modulation and the pulse-position modulation (16-PPM). The effect of PC on the performance of FSO communications is also examined in this study. We evaluated the system’s performance with two types of snow, wet snow and dry snow, as well as with different rain regions. Results show that PC improves the BER of the FSO system;a high rate of improvement is found for wet snow and rain. PC has almost no effect with dry snow because of the high attenuation and the limitations on transmitted power. The BER for 16-PPM is better than that for OOK modulation.
文摘In this paper, a nonlinear robust adaptive controller is proposed for gear transmission servo system (GTS) containing a sandwiched deadzone due to improper gear meshing. The controller is robust to dynamic uncertainties and can compensate the effect caused by the sandwiched nonlinearity which is separated from the control input through drive compliance. The proposed design methodology does not require an adaptive inverse deadzone function and does not require the knowledge of its parameter and only the knowledge of upper bounds is required.
文摘The research problem in this study is the longitudinal optical phonon energy on metal/semiconductor interface for high performance semiconductor device.The research solution is to make the software model with finite difference time domain(FDTD)solution for transmission and reflection pulse between metal and semiconductor interface for carrier dynamics effects.The objective of this study is to find the quantum mechanics understanding on interface engineering for fabricating the high performance device for future semiconductor technology development.The analysis was carried out with the help of MATLAB.The quantum mechanical spatial field on metal-semiconductor stripe structure has been analyzed by FDTD techniques.This emission reveals a characteristic polar radiation distribution of electric dipoles and a wavelength independent of the structure size or the direction of emission;consequently,it is attributed to thermally generate electric dipoles resonating with the longitudinal optical phonon energy.Phonon energy occurs lattice vibration of material by the polarization of light,if the material has rigid structure reflect back the incident light.So,high reflective metal-semiconductor structure always use as photodectors devices in optical fiber communication.No lattice vibration material structure has no phonon effect,so this structure based devices can get high performance any other structure based devices.The transmission and reflection coefficient of metal-semiconductor GaN/Au layer structure compare with GaN/Ti and GaN/Pt structure.Parallel(P)and transverse(S)polarization of light incident on a metal-semiconductor nanolayer structure with IR wavelength.Efficient use of the layer by layer(LbL)method to fabricate nanofilms requires meeting certain conditions and limitations that were revealed in the course of research on model systems.
基金This work was supported by Ministry of Higher Education through the Fundamental Research Grant Scheme(FRGS)under a grant number of FRGS/1/2020/ICT09/UNIMAP/02/2.
文摘This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum(OAM)waves with Mode+2 at 3.5 GHz(3.4 to 3.6 GHz)of the sub-6 GHz fifth-generation(5G)New Radio(NR)band.The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate.In contrast to previous works involving the use of rigid substrates to generate OAM waves,this work explored the use of flexible substrates to generate OAM waves for the first time.Other than that,the proposed antenna was simulated,analyzed,fabricated,and tested to confirm the generation of OAMMode+2.With the same design,OAM Mode−2 can be generated readily simply by mirror imaging the feed network.Note that the proposed antenna operated at the desired frequency of 3.5 GHz with an overall bandwidth of 400 MHz in free space.Moreover,mode purity analysis is carried out to verify the generation of OAM Mode+2,and the purity obtained was 41.78%at free space flat condition.Furthermore,the effect of antenna bending on the purity of the generated OAM mode is also investigated.Lastly,the influence of textile properties on OAM modes is examined to assist future researchers in choosing suitable fabrics to design flexible OAM-based antennas.After a comprehensive analysis considering different factors related to wearable applications,this paper demonstrates the feasibility of generating OAMwaves using textile antennas.Furthermore,as per the obtained Specific Absorption Rate(SAR),it is found that the proposed antenna is safe to be deployed.The findings of this work have a significant implication for body-centric communications.
文摘Cooperative relaying for a system that consists of different configurations of a collocated and uniform linear antenna is analyzed. The amplify-and-forward relaying (AF) and selection combining (S-AF) schemes based on maximal ratio combining (MRC) method for single- and multi-relay are investigated. In this study, the bit-error-rate (BER) expression for collocated and uniform linear antenna in cooperative communication system over flat Rayleigh fading channel is derived. The result for 3-element collocated antennas (tripole) shows improvement in performance over dual-polarized antennas. Also increasing number of tripole antenna does not add improvement.
文摘A quasi-exactly solvable model refers to any second order differential equation with polynomial coefficients of the form A(x)y’’(x)+B(x)y’(x)+C(x)y(x)=0 where a pair of exact polynomials {y(x), C(x)} with respective degrees {deg[y]=n, deg[C]=p} are to be found simultaneously in terms of the coefficients of two given polynomials {A(x), B(x)}. The existing methods for solving quasi-exactly solvable models require the solution of a system of nonlinear algebraic equations of which the dimensions depend on n, the degree of the exact polynomial solution y(x). In this paper, a new method employing a set of polynomials, called canonical polynomials, is proposed. This method requires solving a system of nonlinear algebraic equations of which the dimensions depend only on p, the degree of C(x), and do not vary with n. Several examples are implemented to testify the efficiency of the proposed method.