Concern towards power quality (PQ) has increased immensely due to the growing usage of high technology devices which are very sensitive towards voltage and current variations and the de-regulation of the electricity m...Concern towards power quality (PQ) has increased immensely due to the growing usage of high technology devices which are very sensitive towards voltage and current variations and the de-regulation of the electricity market. The impact of these voltage and current variations can lead to devices malfunction and production stoppages which lead to huge financial loss for the production company. The deregulation of electricity markets has made the industry become more competitive and distributed. Thus, a higher demand on reliability and quality of services will be required by the end customers. To ensure the power supply is at the highest quality, an automatic system for detection and localization of PQ activities in power system network is required. This paper proposed to use Slantlet Transform (SLT) with Support Vector Machine (SVM) to detect and localize several PQ disturbance, i.e. voltage sag, voltage swell, oscillatory-transient, odd-harmonics, interruption, voltage sag plus odd-harmonics, voltage swell plus odd-harmonics, voltage sag plus transient and pure sinewave signal were studied. The analysis on PQ disturbances signals was performed in two steps, which are extraction of feature disturbance and classification of the dis- turbance based on its type. To take on the characteristics of PQ signals, feature vector was constructed from the statistical value of the SLT signal coefficient and wavelets entropy at different nodes. The feature vectors of the PQ disturbances are then applied to SVM for the classification process. The result shows that the proposed method can detect and localize different type of single and multiple power quality signals. Finally, sensitivity of the proposed algorithm under noisy condition is investigated in this paper.展开更多
Maximum Power Point Tracking (MPPT) algorithms are now widely used in PV systems independently of the weather conditions. In function of the application, a DC-DC converter topology is chosen without any previous perfo...Maximum Power Point Tracking (MPPT) algorithms are now widely used in PV systems independently of the weather conditions. In function of the application, a DC-DC converter topology is chosen without any previous performance test under normal weather conditions. This paper proposes an experimental evaluation of MPPT algorithms according to DC-DC converters topologies, under normal operation conditions. Four widely used MPPT algorithms <i><i><span>i.e.</span></i><span></span></i> Perturb and Observe (P & O), Hill Climbing (HC), Fixed step Increment of Conductance (INCF) and Variable step Increment of Conductance (INCV) are implemented using two topologies of DC-DC converters <i><span>i.e.</span></i><span> buck and boost converters. As input variables to the PV systems, recorded irradiance and temperature, and extracted photovoltaic parameters (ideality factor, series resistance and reverse saturation current) were used. The obtained results show that buck converter has a lot of power losses when controlled by each of the four MPPT algorithms. Meanwhile, boost converter presents a stable output power during the whole day. Once more, the results show that INCV algorithm has the best performance.</span>展开更多
The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LS...The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LSSVM) and multivariable regression(MVR) models was presented to identify the real power transfer between generators and loads.These AI techniques adopt supervised learning,which first uses modified nodal equation(MNE) method to determine real power contribution from each generator to loads.Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of various AI methods compared to that of the MNE method.展开更多
The increases in power network and weak tie-line have led power system oscillation problems. To improve the oscillatory stability, installing the power system stabilizer (PSS) with optimal allocation is considered due...The increases in power network and weak tie-line have led power system oscillation problems. To improve the oscillatory stability, installing the power system stabilizer (PSS) with optimal allocation is considered due to excessive cost. This paper recommends the suitable PSS locations by using eigenvalue analysis and participation factor to enhance the system oscillation damping. The effects of installed PSSs in damping local and inter-area modes of oscillations are confirmed through time domain simulation results. The effectiveness of proposed approach is tested and validated on MEPE test system. Robustness of stabilizers against dynamic response of generator speed deviation, rotor angle deviation, and response of mechanical power are observed to access the performances of PSSs.展开更多
This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general ...This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general construction, the basic working principle and the design concept of the proposed HEFSM are outlined. Then, the initial drive performances of the proposed HEFSM are evaluated based on 2D-FEA, in which the design restrictions, specifications and target performances are similar with conventional interior permanent magnet synchronous motor (IPMSM) used in HEV. Since the initial results fail to achieve the target performances, deterministic design optimization approach is used to treat several design parameters. After several cycles of optimization, the proposed motor makes it possible to obtain the target torque and power of 333 Nm and 123 kW, respectively. In addition, due to definite advantage of robust rotor structure of HEFSM, rotor mechanical stress prediction at maximum speed of 12,400 r/min is much lower than the mechanical stress in conventional IPMSM. Finally, the maximum torque and power density of the final design HEFSM are approximately 11.41 Nm/kg and 5.55 kW/kg, respectively, which is 19.98% and 58.12% more than the torque and power density in existing IPMSM for Lexus RX400h.展开更多
With the increasing development of EVs, the energy demand from theconventional utility grid increases in proportion. On the other hand, photovoltaic(PV) energy sources can overcome several problems when charging EVs f...With the increasing development of EVs, the energy demand from theconventional utility grid increases in proportion. On the other hand, photovoltaic(PV) energy sources can overcome several problems when charging EVs from theutility grid especially in remote areas. This paper presents an effective photovoltaic stand-alone charging station for EV applications. The proposed charging station incorporates PV array, a lithium-ion battery representing the EV battery, and alead-acid battery representing the energy storage system (ESS). A bidirectionalDC-DC converter is employed for charging/discharging the ESS and a unidirectional DC-DC converter is utilized for charging the EV battery. The proposed controllers achieve maximum power extraction from the PV and regulate the DC-linkvoltage. It also controls the voltage and current levels of both the ESS and the EVduring the charging/discharging process. The study has been applied to two caseswith different power levels. Analysis, simulation, and implementation of the proposed system are presented. A 120 W laboratory prototype is carried out to verifythe system performance, experimentally. Design guides for higher power levelsare proposed to help in choosing the proper parameters of the converters. Boththe simulation and experimental results are matched and verify the highperformance of the proposed system.展开更多
Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based...Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based high rate digital communication over low-voltage powerline is analyzed and simulated. The capability of the signal transmission system in overcoming multi-path interference and selection of the system parameters are discussed. And time-domain simulation is carried out to investigate the transmission capability of the OFDM communication system for different mapping schemes and transmission power levels. Simulation results show that it is possible to realize high rate digital communication over low-voltage powerline using OFDM when the transmitted power is large enough.展开更多
The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristi...The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.展开更多
A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connect...A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.展开更多
Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving ...Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.展开更多
In this paper, the performance of grid connected PV system that is installed in Super Mega Factory is presented. The output parameters of 4 kW PV is collected and analyzed. Then, according to the results the weak poin...In this paper, the performance of grid connected PV system that is installed in Super Mega Factory is presented. The output parameters of 4 kW PV is collected and analyzed. Then, according to the results the weak points of the system were found and the theoretical output power was compared. After that we try to get the maximum output power making the correction of collector angle and place suitable panel position.展开更多
Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full powe...Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.展开更多
This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is...This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.展开更多
Digital twin(DT)technology has been utilised in many applications including electric vehicles(EVs).A DT is a virtual representation of a physical object,enabled through real-time data integration,simulation,and optimi...Digital twin(DT)technology has been utilised in many applications including electric vehicles(EVs).A DT is a virtual representation of a physical object,enabled through real-time data integration,simulation,and optimisation tools.Unlike conventional simulations,which are typically offline and lack real-time interaction,a DT continuously synchronises with the physical system,enabling dynamic performance monitoring and predictive an-alytics.Achieving a full DT involves progressive stages,with the digital shadow(DS)being the final step before realising a bidirectional DT.Building a DS provides a scalable real-time performance monitoring and fault detection framework,enabling proactive decision-making in EV operations.This study introduces a DS system specifically designed to monitor the performance of a permanent magnet synchronous motor(PMSM)drive system in EVs,marking a critical phase towards a complete DT.The methodology for creating the DS is detailed,including the establishment of a compre-hensive test bench for the EV powertrain as the physical reference model.The mathe-matical model of the EV-PMSM was formulated,and an advanced estimation model utilising the extended Kalman filter(EKF)was implemented.MATLAB/Simulink was employed to develop the motor’s digital model.Real-time data acquisition from the physical model was facilitated through a data acquisition system(DAS)equipped with a controller area network(CAN)communication interface.The digital model underwent thorough validation against sensory data collected from the test bench.The motor digital model was deployed to a DS framework enabled through real-time data flow from the actual EV during real-world driving conditions.The results demonstrated a high accuracy of 97%between the DS predictions and the corresponding EV data,confirming the DS’s reliability.These findings pave the way for future advancements,including bidirectional interaction and the realisation of a full DT.展开更多
We investigate the dynamic behavior of vector soliton train propagating in optical media,modeled by the coherently coupled nonlinear Schrodinger(NLS)equation.It is shown that an increase in phase parameters,induces an...We investigate the dynamic behavior of vector soliton train propagating in optical media,modeled by the coherently coupled nonlinear Schrodinger(NLS)equation.It is shown that an increase in phase parameters,induces an increase in intensity of the periodic soliton train,as well as the number of pulses for each transverse electric(TE)and transverse magnetic(TM)mode.From the perturbation approach,when examining the propagation states for the transverse electric and magnetic(TEM)mode,we found a family of three bound-vector soliton states with a different propagation parameter at the first order,representing the three possible distinct vector optical fields reconfiguration of the initial profiles one of which is the‘replication’.At the second order,we obtain an eigenvalue problem with an optical external field,giving rise to five high intensity periodic vector soliton structures described by elliptic functions.Such vector soliton trains are intended to complement single-pulse solitons for multi-channel communication applications.展开更多
Partial discharges in air in non-uniform electric field occur in surroundings made of high curvature elements.The equivalent electrode system,needle-plane refers both to external components of high voltage insulating ...Partial discharges in air in non-uniform electric field occur in surroundings made of high curvature elements.The equivalent electrode system,needle-plane refers both to external components of high voltage insulating systems and to micro sharpness in the internal structure of those systems.The ionization zone,accumulation of space charge and formation of corresponding current pulses depend on electrode configuration,voltage level,pressure,temperature and humidity of air.The assessment of pressure influence on discharge mechanism in non-homogenous electric field has been performed on the basis of empirical density distributions of discharge charges at different voltage levels,electrode distance,curvature of high voltage electrode and taking into account solid dielectric barrier in serial configuration.The measurement results obtained at variable voltage level yield the influence of electric field strength in the needle electrode zone.While increasing voltage,a deviation from normal distribution may be observed that reveals other forms of discharge.展开更多
The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detail...The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detailed photovoltaic(PV)module and the application of new control techniques for efficient energy extraction.The PV module employs a single-stage conversion method to integrate it with the utility grid.For extraction the maximum power from PV and integrate it to power grid,a three-phase voltage source converter is used.For obtaining the maximum power at a particular irradiance a maximum power point tracking(MPPT)scheme is used.The fuzzy logic control and adaptive network-based fuzzy inference system are proposed for direct current(DC)link voltage control.The proposed model and control scheme are validated through a comparison with the standard power-voltage and current-voltage charts for a PV module.Simulation results demonstrate that the system stability can be maintained with the power grid and in the island mode,in contrast with the MPPT.展开更多
Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil f...Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions.展开更多
Unique double salient structure of Permanent Magnet Flux Switching Machines(PMFSM)with both Concentrated Armature inding(CAW)and Permanent Magnet(PM)on stator attract researcher's interest for high speed brushless...Unique double salient structure of Permanent Magnet Flux Switching Machines(PMFSM)with both Concentrated Armature inding(CAW)and Permanent Magnet(PM)on stator attract researcher's interest for high speed brushless application when high torque density(T den)and power density(P den)are the primal requirements.However,despite of stator leakage flux,high rare-earth PM usage,PMFSM is subjected to slot effects due to presence of both PM and CAW in stator and partial saturation due to double salient structure which generates cogging torque(T cog),torque ripples(Trip)and lower average torque(T avg).To overcomne aforesaid demerits,this paper presents Partitioned PM(PPM)Consequent Pole Flux Switching Machine(PPM-CPFSM)with flux barriers to enhance flux mnodulation,curtail PM usage and diminish stator leakage flux which reduces slotting effects and partial saturation to ultimately reduces T cog and Trip In comparison with the existing state of the art,proposed PPM-CPFSM reduces 46.5390 of the total PM volumne and offer Tavg higher up to 88.8%,suppress Trip naximun up to 24.8%,diminish Tcog up to 22.74%and offer 2.45 times Tden and Pden.Furthermore,torque characteristics of proposed PPM-CPFSM is investigated utilizing space harmonics injection i.e.inverse cosine,inverse cosine with 3rd harmonics and rotor pole shaping techniques i.e.,ecce ntric circle,chanfering and notching.Detailed electromagnetic perfornance analysis reveals that harmonics injection suppressed Tcog maximun up to 83.5%,Trip up to 40.72%at the cost of 4.71%Tavg.Finally,rotor mnechanical stress analysis is utilized for rotor withstand capability and 3D-FEA based Coupled Elctromagnetic Thermal Analysis(CETA)for thermal behavior of the developed PPM CPFSM.CETA reveals that open space along PPM act as cooling duct that inprove heat dissipation.展开更多
This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator ...This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator teeth height,and number of poles are analyzed to compare overall torque,power,and torque ripples in order to select the best design parameters and their ranges.Pyleecan,an open-source software,is used to design and optimize the motor for electric vehicle applications.Following optimization with Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ),two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32%and 77%.Additionally,the impact of different magnet grades on the output performances is analyzed.展开更多
文摘Concern towards power quality (PQ) has increased immensely due to the growing usage of high technology devices which are very sensitive towards voltage and current variations and the de-regulation of the electricity market. The impact of these voltage and current variations can lead to devices malfunction and production stoppages which lead to huge financial loss for the production company. The deregulation of electricity markets has made the industry become more competitive and distributed. Thus, a higher demand on reliability and quality of services will be required by the end customers. To ensure the power supply is at the highest quality, an automatic system for detection and localization of PQ activities in power system network is required. This paper proposed to use Slantlet Transform (SLT) with Support Vector Machine (SVM) to detect and localize several PQ disturbance, i.e. voltage sag, voltage swell, oscillatory-transient, odd-harmonics, interruption, voltage sag plus odd-harmonics, voltage swell plus odd-harmonics, voltage sag plus transient and pure sinewave signal were studied. The analysis on PQ disturbances signals was performed in two steps, which are extraction of feature disturbance and classification of the dis- turbance based on its type. To take on the characteristics of PQ signals, feature vector was constructed from the statistical value of the SLT signal coefficient and wavelets entropy at different nodes. The feature vectors of the PQ disturbances are then applied to SVM for the classification process. The result shows that the proposed method can detect and localize different type of single and multiple power quality signals. Finally, sensitivity of the proposed algorithm under noisy condition is investigated in this paper.
文摘Maximum Power Point Tracking (MPPT) algorithms are now widely used in PV systems independently of the weather conditions. In function of the application, a DC-DC converter topology is chosen without any previous performance test under normal weather conditions. This paper proposes an experimental evaluation of MPPT algorithms according to DC-DC converters topologies, under normal operation conditions. Four widely used MPPT algorithms <i><i><span>i.e.</span></i><span></span></i> Perturb and Observe (P & O), Hill Climbing (HC), Fixed step Increment of Conductance (INCF) and Variable step Increment of Conductance (INCV) are implemented using two topologies of DC-DC converters <i><span>i.e.</span></i><span> buck and boost converters. As input variables to the PV systems, recorded irradiance and temperature, and extracted photovoltaic parameters (ideality factor, series resistance and reverse saturation current) were used. The obtained results show that buck converter has a lot of power losses when controlled by each of the four MPPT algorithms. Meanwhile, boost converter presents a stable output power during the whole day. Once more, the results show that INCV algorithm has the best performance.</span>
基金the Ministry of Higher Education,Malaysia (MOHE) for the financial funding of this projectUniversiti Kebangsaan Malaysia and Universiti Teknologi Malaysia for providing infrastructure and moral support for the research work
文摘The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LSSVM) and multivariable regression(MVR) models was presented to identify the real power transfer between generators and loads.These AI techniques adopt supervised learning,which first uses modified nodal equation(MNE) method to determine real power contribution from each generator to loads.Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of various AI methods compared to that of the MNE method.
文摘The increases in power network and weak tie-line have led power system oscillation problems. To improve the oscillatory stability, installing the power system stabilizer (PSS) with optimal allocation is considered due to excessive cost. This paper recommends the suitable PSS locations by using eigenvalue analysis and participation factor to enhance the system oscillation damping. The effects of installed PSSs in damping local and inter-area modes of oscillations are confirmed through time domain simulation results. The effectiveness of proposed approach is tested and validated on MEPE test system. Robustness of stabilizers against dynamic response of generator speed deviation, rotor angle deviation, and response of mechanical power are observed to access the performances of PSSs.
文摘This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general construction, the basic working principle and the design concept of the proposed HEFSM are outlined. Then, the initial drive performances of the proposed HEFSM are evaluated based on 2D-FEA, in which the design restrictions, specifications and target performances are similar with conventional interior permanent magnet synchronous motor (IPMSM) used in HEV. Since the initial results fail to achieve the target performances, deterministic design optimization approach is used to treat several design parameters. After several cycles of optimization, the proposed motor makes it possible to obtain the target torque and power of 333 Nm and 123 kW, respectively. In addition, due to definite advantage of robust rotor structure of HEFSM, rotor mechanical stress prediction at maximum speed of 12,400 r/min is much lower than the mechanical stress in conventional IPMSM. Finally, the maximum torque and power density of the final design HEFSM are approximately 11.41 Nm/kg and 5.55 kW/kg, respectively, which is 19.98% and 58.12% more than the torque and power density in existing IPMSM for Lexus RX400h.
基金funded by the Deanship of Scientific Research,Taif University,KSA(Research project number 1-441-99).
文摘With the increasing development of EVs, the energy demand from theconventional utility grid increases in proportion. On the other hand, photovoltaic(PV) energy sources can overcome several problems when charging EVs from theutility grid especially in remote areas. This paper presents an effective photovoltaic stand-alone charging station for EV applications. The proposed charging station incorporates PV array, a lithium-ion battery representing the EV battery, and alead-acid battery representing the energy storage system (ESS). A bidirectionalDC-DC converter is employed for charging/discharging the ESS and a unidirectional DC-DC converter is utilized for charging the EV battery. The proposed controllers achieve maximum power extraction from the PV and regulate the DC-linkvoltage. It also controls the voltage and current levels of both the ESS and the EVduring the charging/discharging process. The study has been applied to two caseswith different power levels. Analysis, simulation, and implementation of the proposed system are presented. A 120 W laboratory prototype is carried out to verifythe system performance, experimentally. Design guides for higher power levelsare proposed to help in choosing the proper parameters of the converters. Boththe simulation and experimental results are matched and verify the highperformance of the proposed system.
文摘Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based high rate digital communication over low-voltage powerline is analyzed and simulated. The capability of the signal transmission system in overcoming multi-path interference and selection of the system parameters are discussed. And time-domain simulation is carried out to investigate the transmission capability of the OFDM communication system for different mapping schemes and transmission power levels. Simulation results show that it is possible to realize high rate digital communication over low-voltage powerline using OFDM when the transmitted power is large enough.
文摘The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.
文摘A grid connected microgrid connects to the grid at a point of common coupling. Due to the great inertia of the grid which accelerates and decelerates the generator when its frequency tends to deviate, the grid connected microgrid operates at a frequency of the infinity bus. Frequency instability is one of the major challenges facing the grid connected microgrid during islanding. The power demand variation causes the variation in rotor speed, resulting to frequency deviation. Frequency can be brought back to standard by varying the power generation to match with the varying load. The performance of the frequency stability control system at Mwenga hydroelectric microgrid has been studied. Through site visitation, the power demand and generation status data were collected and analysed for model preparation. The results of the study indicate that, during islanding, the Mwenga rural electrification project is observed to be subjected to power imbalance which leads to frequency instability. Although the frequency control system tries to keep the system at a nominal frequency by maintaining the continuous balance between generation and varying load demand, however the system still operates with large magnitude of overshoot, undershoot and longer settling time.
文摘Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.
文摘In this paper, the performance of grid connected PV system that is installed in Super Mega Factory is presented. The output parameters of 4 kW PV is collected and analyzed. Then, according to the results the weak points of the system were found and the theoretical output power was compared. After that we try to get the maximum output power making the correction of collector angle and place suitable panel position.
文摘Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.
文摘This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.
基金Estonian Research Competency Council,Grant/Award Number:PSG453,Eesti Teadusagentuur。
文摘Digital twin(DT)technology has been utilised in many applications including electric vehicles(EVs).A DT is a virtual representation of a physical object,enabled through real-time data integration,simulation,and optimisation tools.Unlike conventional simulations,which are typically offline and lack real-time interaction,a DT continuously synchronises with the physical system,enabling dynamic performance monitoring and predictive an-alytics.Achieving a full DT involves progressive stages,with the digital shadow(DS)being the final step before realising a bidirectional DT.Building a DS provides a scalable real-time performance monitoring and fault detection framework,enabling proactive decision-making in EV operations.This study introduces a DS system specifically designed to monitor the performance of a permanent magnet synchronous motor(PMSM)drive system in EVs,marking a critical phase towards a complete DT.The methodology for creating the DS is detailed,including the establishment of a compre-hensive test bench for the EV powertrain as the physical reference model.The mathe-matical model of the EV-PMSM was formulated,and an advanced estimation model utilising the extended Kalman filter(EKF)was implemented.MATLAB/Simulink was employed to develop the motor’s digital model.Real-time data acquisition from the physical model was facilitated through a data acquisition system(DAS)equipped with a controller area network(CAN)communication interface.The digital model underwent thorough validation against sensory data collected from the test bench.The motor digital model was deployed to a DS framework enabled through real-time data flow from the actual EV during real-world driving conditions.The results demonstrated a high accuracy of 97%between the DS predictions and the corresponding EV data,confirming the DS’s reliability.These findings pave the way for future advancements,including bidirectional interaction and the realisation of a full DT.
文摘We investigate the dynamic behavior of vector soliton train propagating in optical media,modeled by the coherently coupled nonlinear Schrodinger(NLS)equation.It is shown that an increase in phase parameters,induces an increase in intensity of the periodic soliton train,as well as the number of pulses for each transverse electric(TE)and transverse magnetic(TM)mode.From the perturbation approach,when examining the propagation states for the transverse electric and magnetic(TEM)mode,we found a family of three bound-vector soliton states with a different propagation parameter at the first order,representing the three possible distinct vector optical fields reconfiguration of the initial profiles one of which is the‘replication’.At the second order,we obtain an eigenvalue problem with an optical external field,giving rise to five high intensity periodic vector soliton structures described by elliptic functions.Such vector soliton trains are intended to complement single-pulse solitons for multi-channel communication applications.
文摘Partial discharges in air in non-uniform electric field occur in surroundings made of high curvature elements.The equivalent electrode system,needle-plane refers both to external components of high voltage insulating systems and to micro sharpness in the internal structure of those systems.The ionization zone,accumulation of space charge and formation of corresponding current pulses depend on electrode configuration,voltage level,pressure,temperature and humidity of air.The assessment of pressure influence on discharge mechanism in non-homogenous electric field has been performed on the basis of empirical density distributions of discharge charges at different voltage levels,electrode distance,curvature of high voltage electrode and taking into account solid dielectric barrier in serial configuration.The measurement results obtained at variable voltage level yield the influence of electric field strength in the needle electrode zone.While increasing voltage,a deviation from normal distribution may be observed that reveals other forms of discharge.
基金supported by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detailed photovoltaic(PV)module and the application of new control techniques for efficient energy extraction.The PV module employs a single-stage conversion method to integrate it with the utility grid.For extraction the maximum power from PV and integrate it to power grid,a three-phase voltage source converter is used.For obtaining the maximum power at a particular irradiance a maximum power point tracking(MPPT)scheme is used.The fuzzy logic control and adaptive network-based fuzzy inference system are proposed for direct current(DC)link voltage control.The proposed model and control scheme are validated through a comparison with the standard power-voltage and current-voltage charts for a PV module.Simulation results demonstrate that the system stability can be maintained with the power grid and in the island mode,in contrast with the MPPT.
基金by Department of Science and Technology,New Delhi(Indo-Norway consortium)project entitled“Integrated Renewable Resources and Storage Operation and Management”program.
文摘Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions.
文摘Unique double salient structure of Permanent Magnet Flux Switching Machines(PMFSM)with both Concentrated Armature inding(CAW)and Permanent Magnet(PM)on stator attract researcher's interest for high speed brushless application when high torque density(T den)and power density(P den)are the primal requirements.However,despite of stator leakage flux,high rare-earth PM usage,PMFSM is subjected to slot effects due to presence of both PM and CAW in stator and partial saturation due to double salient structure which generates cogging torque(T cog),torque ripples(Trip)and lower average torque(T avg).To overcomne aforesaid demerits,this paper presents Partitioned PM(PPM)Consequent Pole Flux Switching Machine(PPM-CPFSM)with flux barriers to enhance flux mnodulation,curtail PM usage and diminish stator leakage flux which reduces slotting effects and partial saturation to ultimately reduces T cog and Trip In comparison with the existing state of the art,proposed PPM-CPFSM reduces 46.5390 of the total PM volumne and offer Tavg higher up to 88.8%,suppress Trip naximun up to 24.8%,diminish Tcog up to 22.74%and offer 2.45 times Tden and Pden.Furthermore,torque characteristics of proposed PPM-CPFSM is investigated utilizing space harmonics injection i.e.inverse cosine,inverse cosine with 3rd harmonics and rotor pole shaping techniques i.e.,ecce ntric circle,chanfering and notching.Detailed electromagnetic perfornance analysis reveals that harmonics injection suppressed Tcog maximun up to 83.5%,Trip up to 40.72%at the cost of 4.71%Tavg.Finally,rotor mnechanical stress analysis is utilized for rotor withstand capability and 3D-FEA based Coupled Elctromagnetic Thermal Analysis(CETA)for thermal behavior of the developed PPM CPFSM.CETA reveals that open space along PPM act as cooling duct that inprove heat dissipation.
基金funded by the Advanced Sustainable Manufacturing Technologies(ASTUTE2020)operation supporting manufacturing companies across Wales,which has been part-funded by the European Regional Development Fund through the Welsh Government and the participating Higher Education Institutions。
文摘This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator teeth height,and number of poles are analyzed to compare overall torque,power,and torque ripples in order to select the best design parameters and their ranges.Pyleecan,an open-source software,is used to design and optimize the motor for electric vehicle applications.Following optimization with Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ),two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32%and 77%.Additionally,the impact of different magnet grades on the output performances is analyzed.